// ***
// Recursion7.java By: Aiman Hanna (C) 1993 - 2023
// This program illustrates the complexity/efficiency of algorithms,
// and the "Big O" notation to obtain such complexity. The program also
// provides an iterative version of binary search as well as a
// "sequential search" version.
//
// Key Points:
// 1) Big O Notation; O().
// ***
import java.util.Scanner;
public class Recursion7{

private static int recursiveBinaryCtr = 0;

private static int iterativeBinaryCtr = 0;

private static int sequentialSearchCtr = 0;

// A recursive method that uses binary search to find

// a value in a sorted array. If the value is found,

// its index is returned; otherwise, the method returns

// -1 as an indication that the value was not found in the array.

// The method expects an array of integers, a start index and

// an end index for the search, and finally the value that the search is for

public static int recursiveBinarysearch(int[] A, int startIndex, int endIndex, int v)

{

recursiveBinaryCtr++;

int foundIndex = -1, mid;

if(startIndex > endIndex)

// Stopping condition; search is exhausted

return -1;

// without finding the value

// Now find if the value is in the middle of the array

// and if it is not there, then on which part of the array

// it could be there, then search only that part

mid = (startIndex + endIndex)/2;
// Find the middle index

// If the array has an odd number of elements

// that index is in the exact middle; otherwise

// it is one of the middle two, which is okay

if(A[mid] == v)

{

System.out.print("\nThe value was found");

return mid;

// Return the index where the value was found

}

else

// Recursive Steps

{

if(v < A[mid])
// Value could only be in the left part of the array

{

System.out.print("\nWill search the array between index # " + startIndex +

 " and index # " + (mid-1));

foundIndex = recursiveBinarysearch(A, startIndex, mid-1, v);

}

else

// Value could only be in the right part of the array

{

System.out.print("\nWill search the array between index # " + (mid+1) +

" and index # " + endIndex);

foundIndex = recursiveBinarysearch(A, mid+1, endIndex, v);

}

}

return foundIndex;

}

// This method will perform the same binary search as above but it utilizes

// an iterative procedure instead of recursion

public static int iterativeBinarysearch(int[] A, int startIndex, int endIndex, int v)

{

int mid, first, last, result = -1;

Boolean found = false;

first = startIndex;

last = endIndex;

if(first > last)

return -1;

while((first <= last) && !found)

{

iterativeBinaryCtr++;

// Keep track of how many times the loop will go through

mid = (first + last)/2;

if(A[mid] == v)

{

System.out.print("\nThe value was found");

result = mid;

// Return the index where the value was found

found = true;

}

else if (v < A[mid])
// Value could only be in the left part of the array

{

last = mid-1;

}

else if (v > A[mid])
// Value could only be in the right part of the array

{

first = mid+1;

}

}

return result;

}

// This method will perform the same array search as above but it uses

// sequential search instead of binary search

public static int sequentialsearch(int[] A, int startIndex, int endIndex, int v)

{

int result = -1;

for (int i = 0; i < A.length; i++)

{

sequentialSearchCtr++;

if (A[i] == v)

{

System.out.print("\nThe value was found");

result = i;

break;

// No need to continue searching the array

}

}

return result;

}

private static int getRecursiveBinaryCtr()

{

return recursiveBinaryCtr;

}

private static int getIterativeBinaryCtr()

{

return iterativeBinaryCtr;

}

private static int getSequentialSearchCtr()

{

return sequentialSearchCtr;

}

public static void main(String[] args)
 {

 Scanner kb = new Scanner (System.in);

 int[] Arr = new int[25];

 int val, result;

 // Just initialize the array; array must be sorted

 Arr[0] = 12; Arr[1] = 14; Arr[2] = 28; Arr[3] = 31;

 Arr[4] = 35; Arr[5] = 48; Arr[6] = 50; Arr[7] = 51;

 Arr[8] = 57; Arr[9] = 64; Arr[10] = 68; Arr[11] = 75;

 Arr[12] = 82; Arr[13] = 84; Arr[14] = 94; Arr[15] = 98;

 Arr[16] = 104; Arr[17] = 201; Arr[18] = 245; Arr[19] = 277;

 Arr[20] = 284; Arr[21] = 296; Arr[22] = 401; Arr[23] = 458;

 Arr[24] = 581;

 System.out.print("Please enter the value you wish to search for: ");

 val = kb.nextInt();

 System.out.print("\nWill be utilizing Recursive Binary Search to look for the value.");

 // Call the recursive method to find whether or not the value is in the array

 // Initially, start the search over the entire array

 System.out.print("\nInitial search will take place over the entire " +

"array between index # 0 and index # " + (Arr.length-1));

 result = recursiveBinarysearch(Arr, 0, Arr.length-1, val);

 if (result == -1)

 System.out.println("\nValue " + val + " was not found in the array.");

 else

 System.out.println("\nValue " + val + " was found in the array at index # " + result);

 System.out.println("\nIt took " + getRecursiveBinaryCtr() +

 " times to search the array using Recursive Binary Search. ");

 System.out.print("\nNow will be utilizing Iterative Binary Search to look for the value.");
 result = iterativeBinarysearch(Arr, 0, Arr.length-1, val);
 if (result == -1)

System.out.println("\nValue " + val + " was not found in the array.");
 else

System.out.println("\nValue " + val + " was found in the array at index # " + result);
 System.out.println("\nIt took " + getIterativeBinaryCtr() +

" times to search the array using Iterative Binary Search. ");
 System.out.println("\nNow will be utilizing Sequential Search to look for the value.");
 result = sequentialsearch(Arr, 0, Arr.length-1, val);
 if (result == -1)

System.out.println("\nValue " + val + " was not found in the array.");
 else

System.out.println("\nValue " + val + " was found in the array at index # " + result);
 System.out.println("\nIt took " + getSequentialSearchCtr() +

" times to search the array using Sequential Search. ");

 kb.close();
 }
}
/* The Output
Please enter the value you wish to search for: 401
Will be utilizing Recursive Binary Search to look for the value.
Initial search will take place over the entire array between index # 0 and index # 24
Will search the array between index # 13 and index # 24
Will search the array between index # 19 and index # 24
Will search the array between index # 22 and index # 24
Will search the array between index # 22 and index # 22
The value was found
Value 401 was found in the array at index # 22
It took 5 times to search the array using Recursive Binary Search.
Now will be utilizing Iterative Binary Search to look for the value.
The value was found
Value 401 was found in the array at index # 22
It took 5 times to search the array using Iterative Binary Search.
Now will be utilizing Sequential Search to look for the value.
The value was found
Value 401 was found in the array at index # 22
It took 23 times to search the array using Sequential Search.
*/
/* Run Again
Please enter the value you wish to search for: 700
Will be utilizing Recursive Binary Search to look for the value.
Initial search will take place over the entire array between index # 0 and index # 24
Will search the array between index # 13 and index # 24
Will search the array between index # 19 and index # 24
Will search the array between index # 22 and index # 24
Will search the array between index # 24 and index # 24
Will search the array between index # 25 and index # 24
Value 700 was not found in the array.
It took 6 times to search the array using Recursive Binary Search.
Now will be utilizing Iterative Binary Search to look for the value.
Value 700 was not found in the array.
It took 5 times to search the array using Iterative Binary Search.
Now will be utilizing Sequential Search to look for the value.
Value 700 was not found in the array.
It took 25 times to search the array using Sequential Search.
*/
/* Run Again
Please enter the value you wish to search for: 35
Will be utilizing Recursive Binary Search to look for the value.
Initial search will take place over the entire array between index # 0 and index # 24
Will search the array between index # 0 and index # 11
Will search the array between index # 0 and index # 4
Will search the array between index # 3 and index # 4
Will search the array between index # 4 and index # 4
The value was found
Value 35 was found in the array at index # 4
It took 5 times to search the array using Recursive Binary Search.
Now will be utilizing Iterative Binary Search to look for the value.
The value was found
Value 35 was found in the array at index # 4
It took 5 times to search the array using Iterative Binary Search.
Now will be utilizing Sequential Search to look for the value.
The value was found
Value 35 was found in the array at index # 4
It took 5 times to search the array using Sequential Search.
*/
