COMP 249:
Object Oriented
Programming ||

Tutorial 1:
Review of COMP248 and Javadoc

Question 1

Assume a rectangle class with two attributes, a and
b representing the size of the rectangle. What is the
output of this code,

public void myMethod (Rectangle rect) {
rect.a = 157
rect.b = 15;

}

public =s=tatic void main(String[] arg=s) {

Fectangle r = new Rectangle (10, 10):
MyClass o = new MyClass|():

c.myMethod(r) :
Svatem.out.println(r.to5tring()):; // Eectangle =ize

P

Question 2

What is the output of this code, assuming previous
rectangle class:

public volid myMethod (Rectangle rectl, Rectangle rectl) {
rectl = recti;
H

public =static vold main(String([] arg=s) {
Rectangle rl = new Rectangle (10, 10):
Rectangle rZ! = new Rectangle(l>, 15):
MyClas=s o = new MyClas=ss=s|():

c.myMethod (rl, rZ):
System.out.println({rl.toString()); // BEectangle =size
System.out.println(r2.toString()); // Bectangle =size

-

Question 3: Consider these two classes

public class Animal {
private int age;
private String name, color;

public Animal (int age, String name, String color) {
this.age = age;
this.color = color;
this.name = name;

}

public String toString() f{
return "Animal: Name: " + this.name + ", Age: " +
this.age + ", Color: " + this.color;

}

public void setAge(int age) {
this.age = age;

}

public void setName (String name) |
this.name = name;

}

public void setColor (String color) {
this.color = color;

}

public class House ({

private String address;
private Animal animal;

public House (String address, Animal animal) {
this.address = address;
this.animal = animal;

public String toString() {
return "House: Address: " + this.address
+ ",Contains: " + this.animal;

public String getAddress() {
return this.address;

public Animal getAnimal() {
return this.animal;

P

Question 3:

What would be the output of:

class driver {

public static void main(String[] arg) {
Animal a = new Animal (2, "Emma"™, "Red"):;
House hl = new House ("Montreal", a);

a.setAge (3);
a.setName ("Liam") ;
a.setColor ("White") ;
House h”? = new House ("Toronto", a);
System.out.println(hl + "\n" + h2);

Question 4: Coding exercise

Write a Student class which keeps track of grades and
generates a final mark.

You should store:

» 3 quiz scores, an array of int between 0 and 20;
» 1 midterm score, an int between 0 and 50;

» 1 final score, an int between 0 and 100;

» the overallScore (double) and letter grade (char).

also create the appropriate accessor and mutator methods.

Question 5: Coding exercise (cont’d)

Student should also include the methods:
public void calculateOverallScore() { .. }
Quizzes are worth 15% of the grade,
Midterm is worth 35% of the grade,
the Final is worth 50% of the grade.
public void finalLetterGrade() { ..
100 ~90: A70 ~80: CO~60: F
90 ~ 80: B60 ~ 70: D

Comments in Java

3 types of comments in Java:
» // single line comments

» /* Multiple lines comment.
Useful to "erase" a block

of code from compilation */

> /**
* JavaDoc comments

* Can be used to generate html documentation

*/

Javadoc: what is it?

» A standard for documenting Java programs

» A system which allows to attach descriptions to classes,
constructors, fields, interfaces, and methods, in a
generated HTML document.

» This is done by placing appropriate comments directly
before the declaration of the item they describe:

/**

* The Student class 1mplements methods to
* calculate a student’s grades

*/

public class Student { .. }

JavaDoc: generating documentation

» In Eclipse

:clipse
Search

i'éEﬁ

Project | Run Window Help

Open Project

Close Project

[J] Wa Cred
— | |art Build All Ctrl+B
Build Project rade
Build Working Set k
Clean...

<

Build Automatically
Generate Javadoc...

Properties

private double overallScore;
private char letterScore;

£ Generate Javadoc

Javadoc Generation

/I Javadoc generation may ovenwrite existing files

Javadoc command:

ChProgram Files (x86)\Java\jdkl 8.0_25\binjavadoc.exe

- Configure...

Select types for which Javadoc will be generated:
> Ei casonquwis|

Create Javadoc for members with visibility:

() Private () Package () Protected @ Public

Public: Generate Javadoc for public classes and members,

@ Use standard doclet

Destination: ChlUsers\umroot\Documents\COMP 249, C249W201 5\ Assignmentsl Browse...
(7) Use custom doclet
Doclet narme:

Doclet class path:

@ < Back

Mext = “

JavaDoc: generated documentation

| file:///C:/Users/umroot/Documents/COMP 249/C249W2015/AssignmentsiM

D e/A1/C249AQ1W15/doc/Studen =

B Most Visited Getting Started m Outle

PACKAGE CLAS USE TREE DEPRECATED

INDEX

PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD
Class Student

java_lang.Object
Student

DETAIL

_/

gle Caléndar

ALL CLASSES
: FIELD | CONSTR | METHOD

h"

prukblic class Student
extends java.lang.CObject
A class to store a student's grades

Version:

0.1

Author:

Terrence Hill

See Also:

String

Constructor Summary

Constructor and Description

Student ()

Constructor method. takes no arsuments

JavaDoc: general form
/**

* One sentence ending with a period describing the
purpose.

* Additional lines giving

* more details (html tags can be included)

*

* jJavadoc tags to specify more specific information,

* such as parameters and return values for a method

* @Tag Description

* @Tag Description

*/

Javadoc: Some tags

Tags are used to specify specific information in the HTML
documentation.
Some common tags:

» For files, classes, and interfaces:
» @author name
» @version number
» For methods:
» @param name description
» @return description
» @exception exceptionClass description
» @deprecated description
» For everything:
» @see relatedReference (ex. other class name)

Javadoc: Simple example

Here’s a simple JavaDoc comment describing a class:

/**

* The Foobar class does things.
* Amazing things, 1in fact.

*

* @author Bob

* @version 1.1

* (@see String

*/

public class Foobar { .. }

Javadoc: Simple example

Here’s a simple JavaDoc comment describing a method:

/**

* Takes two 1ntegers and uses them to make the

* calculations.

*

* @param firstValue an integer value

* (@dparam secondValue another integer value

* @return a double calculated from the two values provided
*/

public double makeCalculations (int firstValue, int
secondValue) { .. }

Question 6: Javadoc

Go back to your Student class and add Javadoc comments for
each of your classes and methods, compile the
documentation and take a look at the result.

