
Comp 249

Programming Methodology
Chapter 15

Linked Data Structure – Part A
Dr. Aiman Hanna

Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Introduction to Linked Data Structures

 A linked data structure consists of capsules of data known
as nodes that are connected via links

 Links can be viewed as arrows and thought of as one
way passages from one node to another

 In Java, nodes are realized as objects of a node class

 The data in a node is stored via instance variables

 The links are realized as references

 A reference is a memory address, and is stored in a
variable of a class type

 Therefore, a link is an instance variable of the node
class type itself

15-2

Java Linked Lists

 The simplest kind of linked data structure is a
linked list

 A linked list consists of a single chain of nodes,
each connected to the next by a link

 The first node is called the head node

 The last node serves as a kind of end marker

15-3

Nodes and Links in a Linked List

15-4

A Simple Linked List Class

 In a linked list, each node is an object of a node class
 Note that each node is typically illustrated as a box containing one or

more pieces of data

 Each node contains data and a link to another node
 A piece of data is stored as an instance variable of the node

 Data is represented as information contained within the node "box"

 Links are implemented as references to a node stored in an instance
variable of the node type

 Links are typically illustrated as arrows that point to the node to which
they "link“

See LinkedList1.java

See LinkedList2.java

See LinkedList3.java

See LinkedList4.java
15-5

http://www.aimanhanna.com/concordia/comp249/LinkedList1.java.doc
http://www.aimanhanna.com/concordia/comp249/LinkedList2.java.doc
http://www.aimanhanna.com/concordia/comp249/LinkedList3.java.doc
http://www.aimanhanna.com/concordia/comp249/LinkedList4.java.doc

A Simple Linked List Class

 The first node, or start node in a linked list is called the
head node
 The entire linked list can be traversed by starting at the head

node and visiting each node exactly once

 There is typically a variable of the node type (e.g.,
head) that contains a reference to the first node in the
linked list
 However, it is not the head node, nor is it even a node

 It simply contains a reference to the head node

15-6

A Simple Linked List Class

 A linked list object contains the variable head as an
instance variable of the class

 A linked list object does not contain all the nodes in the
linked list directly
 Rather, it uses the instance variable head to locate the head

node of the list

 The head node and every node of the list contain a link
instance variable that provides a reference to the next node in
the list

 Therefore, once the head node can be reached, then every
other node in the list can be reached

15-7

An Empty List Is Indicated by

null

 The head instance variable contains a reference to the
first node in the linked list

 If the list is empty, this instance variable is set to null

 Note: This is tested using ==, not the equals method

 The linked list constructor sets the head instance
variable to null

 This indicates that the newly created linked list is empty

15-8

Indicating the End of a Linked

List

 The last node in a linked list should have its link

instance variable set to null

 That way the code can test whether or not a node is

the last node

 Note: This is tested using ==, not the equals

method

15-9

Traversing a Linked List

 If a linked list already contains nodes, it can be
traversed as follows:

 Set a local variable equal to the value stored by the head node
(its reference)

 This will provides the location of the first node

 After accessing the first node, the accessor method for the
link instance variable will provide the location of the next
node

 Repeat this until the location of the next node is equal to
null

15-10

Traversing a Linked List

15-11

Adding a Node at the Start

15-12

Deleting the Head Node from a

Linked List

 The method deleteHeadNode removes the first
node from the linked list
 It leaves the head variable pointing to (i.e., containing a

reference to) the old second node in the linked list

 The deleted node will automatically be collected and its
memory recycled, along with any other nodes that are
no longer accessible
 In Java, this process is called automatic garbage collection

15-13

Linked Lists Copy Constructors and

clone Methods

 There is a simple way to define copy constructors and the
clone method for data structures such as linked lists

 Unfortunately, this approach produces only shallow copies

 Further coding is needed by the programmer in order to create
copy constructor and clone() methods that perform deep copy

15-14

Pitfall: Privacy Leaks

 You should be careful with privacy leak.

 If the node class accessor method returns a reference to a
node, then the private restriction on the instance
variables can be easily defeated

 The easiest way to fix this problem would be to make the
node class a private inner class in the linked list class

See LinkedList5.java

15-15

http://www.aimanhanna.com/concordia/comp249/LinkedList5.java.doc

Node Inner Class vs.

Node External Class
 Note that the linked list class discussed so is designed to have

the node class as an inner class

 In that case, the linked list, or similar data structure, is made self-
contained by making the node class an inner class

 A node inner class so defined should be made private, unless
used elsewhere
 This can simplify the definition of the node class by eliminating the need

for accessor and mutator methods

 Since the instance variables are private, they can be accessed directly from
methods of the outer class without causing a privacy leak

15-16

Node Inner Class vs.

Node External Class

 However, it is possible that the list can be made dependent on an
external node class

See LinkedList6.java

15-17

http://www.aimanhanna.com/concordia/comp249/LinkedList6.java.doc

Adding and Deleting Nodes

 An iterator is normally used to add or delete a node in a

linked list

 Given iterator variables position and previous,

the following two lines of code will delete the node at

location position:
previous.link = position.link;

position = position.link;

 Note: previous points to the node before position

15-18

Deleting a Node (Part 1 of 2)

15-19

1. Existing list with the iterator positioned at “shoes”

"orange juice" "shoes" "socks " null"coat"

head previous position

2. Bypass the node at position from previous

previous.link = position.link;

"orange juice" "shoes" "socks" null"coat"

head previous position

Deleting a Node (Part 2 of 2)

15-20

3. Update position to reference the next node
position = position.link;

"orange juice" "shoes" "socks" null"coat"

head previous position

Since no variable references the node "shoes" Java will automatically

recycle the memory allocated for it .

4. Same picture with deleted node not shown

"orange juice" "socks" null"coat"

head previous position

Adding and Deleting Nodes

 Note that Java has automatic garbage collection
 In many other languages the programmer has to keep track of deleted

nodes and explicitly return their memory for recycling

 This procedure is called explicit memory management

 The iterator variables position and previous can be used
to add a node as well
 previous will point to the node before the insertion point, and
position will point to the node after the insertion point

Node temp = new Node(newData,position);

previous.link = temp;

15-21

Adding a Node between Two

Nodes (Part 1 of 2)

15-22

1. Existing list with the iterator positioned at “shoes”

"orange juice" "shoes" null"coat"

head previous position

2. Create new Node with "socks" linked to "shoes"

temp = new Node(newData, position); // newData is "socks"

"orange juice" "shoes" null"coat"

head previous position

"socks"temp

Adding a Node between Two

Nodes (Part 2 of 2)

15-23

3. Make previous link to the Node temp

previous.link = temp;

"orange juice" "shoes" null"coat"

head previous position

"socks"
temp

4. Picture redrawn for clarity, but structurally identical to picture 3

"orange juice" "socks ""coat"

head previous temp

"shoes" null

position

Variations on a Linked List

 An ordinary linked list allows movement in one direction only

 However, a doubly linked list has one link that references the next node, and
one that references the previous node

 The node class for a doubly linked list can begin as follows:

private class TwoWayNode

{

private String item;

private TwoWayNode previous;

private TwoWayNode next;

. . .

 In addition, the constructors and methods in the doubly linked list class
would be modified to accommodate the extra link

15-24

A Doubly Linked List

15-25

See LinkedList10.java

http://www.aimanhanna.com/concordia/comp249/LinkedList10

Adding a Node to the Front of a

Doubly Linked List

15-26

Deleting a Node from a Doubly

Linked List (1 of 2)

null

1. Existing list with an iterator referencing "shoes"

"coat"

head

"shoes” "socks” null

position

2. Bypass the "shoes" node from the next link of the previous node

position.previous.next = position.next;

null "coat"

head

"shoes” "socks” null

position

15-27

Deleting a Node from a Doubly

Linked List (2 of 2)

3. Bypass the "shoes" node from the previous link of the next node

and move position off the deleted node

null "coat"

head

"shoes” "socks” null

position

position.next.previous = position.previous;

position = position.next;

4. Picture redrawn for clarity with the "shoes" node removed since

 there are no longer references pointing to this node .

null "coat"

head

"socks”

position

15-28

Inserting a Node Into a Doubly

Linked List (1 of 2)

null

1. Existing list with an iterator referencing "shoes"

"coat"

head

"shoes” "socks” null

position

2. Create new TwoWayNode with previous linked to "coat" and next to "shoes"

TwoWayNode temp = new TwoWayNode(newData, position.previous, position);

// newData = "shirt"

null "coat"

head

"shoes” "socks” null

"shirt"

positiontemp

15-29

Inserting a Node Into a Doubly

Linked List (2 of 2)

15-30

A Generic Linked List
 A linked list can be created whose Node class has a type parameter
T for the type of data stored in the node
 Therefore, it can hold objects of any class type, including types that

contain multiple instance variable

 The type of the actual object is plugged in for the type parameter T

 For the most part, this class can have the same methods, coded
in basically the same way, however some major difference can be
there, and adjustment to the code may hence be necessary

 One of such differences is the use of the clone() method

See LinkedList7.java

See LinkedList8.java

15-31

http://www.aimanhanna.com/concordia/comp249/LinkedList7.java.doc
http://www.aimanhanna.com/concordia/comp249/LinkedList8.java.doc

Pitfall: The clone Method Is Protected in

Object

 It would have been preferable to clone the data belonging
to the list being copied in the copyOf method as follows:
nodeReference = new

Node((T)(position.data).clone(), null);

 However, this is not allowed, and this code will not
compile
 The error message generated will state that clone is protected in
Object

 Although the type used is T, not Object, any class can be
plugged in for T

 When the class is compiled, all that Java knows is that T is a
descendent class of Object

15-32

Tip: Use a Type Parameter Bound for a Better

clone

 One solution to this problem is to place a bound

on the type parameter T so that it must satisfy a

suitable interface

 Although there is no standard interface that does

this, it is easy to define one

 For example, a Cloneable2 interface could

be defined

15-33

Tip: Use a Type Parameter Bound for a Better

clone

 Any class that implements the Cloneable2
interface would have these three properties:

1. It would implement the Cloneable interface
because Cloneable2 extends Cloneable

2. It would have to implement a public clone method

3. Its clone method would have to make a deep copy

15-34

Tip: Cloning is an "All or Nothing" Affair

 If a clone method is defined for a class, then it

should follow the official Java guidelines

 In particular, it should implement the Cloneable

interface

15-35

Exceptions

 A generic data structure is likely to have methods that throw
exceptions

 Situations such as a null argument to the copy constructor may
be handled differently in different situations
 If this happens, it is best to throw a NullPointerException, and

let the programmer who is using the linked list handle the exception,
rather than take some arbitrary action

 A NullPointerException is an unchecked exception: it need not be
caught or declared in a throws clause

15-36

Pitfall: Using Node instead of Node<T>

 Any names can be substituted for the node Node and its
parameter <T>

 When defining the List<T> class, the type for a node is
Node<T>, not Node
 If the <T> is omitted, this is an error for which the compiler may or may

not issue an error message (depending on the details of the code), and
even if it does, the error message may be quite strange

 Look for a missing <T> when a program that uses nodes with type
parameters gets a strange error message or doesn't run correctly

15-37

A Generic Linked List: the equals Method

 Like other classes, a linked list class should normally have an
equals method

 The equals method can be defined in a number of
reasonable ways
 Different definitions may be appropriate for different situations

 Two such possibilities are the following:
1. They contain the same data entries (possibly in different orders)

2. They contain the same data entries in the same order

 Of course, the type plugged in for T must also have redefined
the equals method

15-38

Iterators

 A collection of objects, such as the nodes of a linked list,
must often be traversed in order to perform some action on
each object
 An iterator is any object that enables a list to be traversed in this way

 A linked list class may be created that has an iterator inner
class
 If iterator variables are to be used outside the linked list class, then the

iterator class would be made public

 The linked list class would have an iterator method that returns
an iterator for its calling object

 Given a linked list named list, this can be done as follows:
LinkedList2.List2Iterator i = list.iterator();

15-39

Iterators

 The basic methods used by an iterator are as

follows:

 restart: Resets the iterator to the beginning of the

list

 hasNext: Determines if there is another data item

on the list

 next: Produces the next data item on the list

See LinkedList9.java

15-40

http://www.aimanhanna.com/concordia/comp249/LinkedList9.java.doc

A Linked List with an

Iterator (Part 1 of 6)

15-41

A Linked List with an

Iterator (Part 2 of 6)

15-42

A Linked List with an

Iterator (Part 3 of 6)

15-43

A Linked List with an

Iterator (Part 4 of 6)

15-44

A Linked List with an

Iterator (Part 5 of 6)

15-45

A Linked List with an

Iterator (Part 6 of 6)

15-46

Using an Iterator (Part 1 of 6)

15-47

Using an Iterator (Part 2 of 6)

15-48

Using an Iterator (Part 3 of 6)

15-49

Using an Iterator (Part 4 of 6)

15-50

Using an Iterator (Part 5 of 6)

15-51

Using an Iterator (Part 6 of 6)

15-52

The Java Iterator Interface

 Java has an interface named Iterator that

specifies how Java would like an iterator to

behave

 Although the iterators examined so far do not satisfy

this interface, they could be easily redefined to do so

15-53

