
Comp 249
Programming Methodology

Chapter 13
Generics & The ArrayList Class

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by
Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley
Copyright © 2023 Aiman Hanna

All rights reserved

Introduction to Generics

 Beginning with version 5.0, Java allows class and
method definitions that include parameters for
types

 Such definitions are called generics
 Generic programming with a type parameter enables

code to be written that applies to any class

14-2

The ArrayList Class

 ArrayList is a class in the standard Java libraries
 Unlike arrays, which have a fixed length once they have been

created, an ArrayList is an object that can grow and
shrink while your program is running

 In general, an ArrayList serves the same purpose as
an array, except that an ArrayList can change
length while the program is running

14-3

The ArrayList Class

 The class ArrayList is implemented using an
array as a private instance variable
 When this hidden array is full, a new larger hidden

array is created and the data is transferred to this
new array

14-4

The ArrayList Class

 Why not always use an ArrayList instead of an
array?

1. An ArrayList is less efficient than an array
2. It does not have the convenient square bracket notation
3. The base type of an ArrayList must be a class type (or

other reference type): it cannot be a primitive type
 This last point is less of a problem now that Java provides

automatic boxing and unboxing of primitives

14-5

Using the ArrayList Class

 In order to make use of the ArrayList class, it must
first be imported from the package java.util

 An ArrayList is created and named in the same way
as object of any class, except that you specify the base
type as follows:
ArrayList<BaseType> aList =
 new ArrayList<BaseType>();

14-6

Using the ArrayList Class

 An initial capacity can be specified when creating an
ArrayList as well
 The following code creates an ArrayList that stores objects

of the base type String with an initial capacity of 20 items
ArrayList<String> list =
 new ArrayList<String>(20);

 Specifying an initial capacity does not limit the size to
which an ArrayList can eventually grow

 Note that the base type of an ArrayList is specified
as a type parameter

See ArrayList1.java

14-7

http://www.aimanhanna.com/concordia/comp249/ArrayList1.java.doc

Using the ArrayList Class

 The add method is used to set an element
for the first time in an ArrayList

list.add("something");

 The method name add is overloaded

 There is also a two argument version that allows
an item to be added at any currently used index
position or at the first unused position

14-8

Using the ArrayList Class

 The size method is used to find out how many
indices already have elements in the ArrayList

int howMany = list.size();

 The set method is used to replace any existing
element, and the get method is used to access the
value of any existing element

list.set(index, "something else");
String thing = list.get(index);

14-9

Tip: Summary of Adding to an
ArrayList

 The add method is usually used to place an
element in an ArrayList position for the
first time (at an ArrayList index)

 The simplest add method has a single
parameter for the element to be added, and adds
an element at the next unused index, in order

14-10

Tip: Summary of Adding to an
ArrayList

 An element can be added at an already occupied
list position by using the two-parameter version
of add

 This causes the new element to be placed at the
index specified, and every other member of the
ArrayList to be moved up by one position

14-11

Tip: Summary of Adding to an
ArrayList

 The two-argument version of add can also be used to
add an element at the first unused position (if that
position is known)

 Any individual element can be changed using the set
method
 However, set can only reset an element at an index that

already contains an element
 In addition, the method size can be used to

determine how many elements are stored in an
ArrayList

14-12

Methods in the Class
ArrayList

 The tools for manipulating arrays consist only of
the square brackets and the instance variable
length

 ArrayLists, however, come with a selection
of powerful methods that can do many of the
things for which code would have to be written
in order to do them using arrays

See ArrayList2.java

14-13

http://www.aimanhanna.com/concordia/comp249/ArrayList2.java.doc

Some Methods in the Class
ArrayList (Part 1 of 11)

14-14

Some Methods in the Class
ArrayList (Part 2 of 11)

14-15

Some Methods in the Class
ArrayList (Part 3 of 11)

14-16

Some Methods in the Class
ArrayList (Part 4 of 11)

14-17

Some Methods in the Class
ArrayList (Part 5 of 11)

14-18

Some Methods in the Class
ArrayList (Part 6 of 11)

14-19

Some Methods in the Class
ArrayList (Part 7 of 11)

14-20

Some Methods in the Class
ArrayList (Part 8 of 11)

14-21

Conversion between ArrayList
and arrays

14-22

 Conversion from ArrayList to arrays is possible

 Two methods exists:
Object[] toArray(),
and
Type[] toArray(Type[] a)

See ArrayList3.java

http://www.aimanhanna.com/concordia/comp249/ArrayList3.java.doc

Some Methods in the Class
ArrayList (Part 9 of 11)

14-23

Some Methods in the Class
ArrayList (Part 10 of 11)

14-24

Some Methods in the Class
ArrayList (Part 11 of 11)

14-25

See ArrayList7.java

See ArrayList8.java

http://www.aimanhanna.com/concordia/comp249/ArrayList7.java.doc
http://www.aimanhanna.com/concordia/comp249/ArrayList8.java.doc

Why are Some Parameters of Type
Base_Type and Others of type Object

 When looking at the methods available in the ArrayList
class, there appears to be some inconsistency
 In some cases, when a parameter is naturally an object of the base type,

the parameter type is the base type
 However, in other cases, it is the type Object

 This is because the ArrayList class implements a number of
interfaces, and inherits methods from various ancestor classes
 These interfaces and ancestor classes specify that certain parameters have

type Object

14-26

The "For Each" Loop

 The ArrayList class is an example of a
collection class

 Starting with version 5.0, Java has added a new
kind of for loop called a for-each or enhanced for
loop
 This kind of loop has been designed to cycle

through all the elements in a collection (like an
ArrayList)

See ArrayList4.java
14-27

http://www.aimanhanna.com/concordia/comp249/ArrayList4.java.doc

Passing ArrayList as Method
Parameters

 An ArrayList can be passed as a parameter
to a method in a similar fashion to other types

See ArrayList5.java

14-28

http://www.aimanhanna.com/concordia/comp249/ArrayList5.java.doc

Tip: Use trimToSize to Save Memory

 An ArrayList automatically increases its capacity when
needed
 However, the capacity may increase beyond what a program requires
 In addition, although an ArrayList grows automatically when needed,

it does not shrink automatically

 If an ArrayList has a large amount of excess capacity, an
invocation of the method trimToSize will shrink the capacity
of the ArrayList down to the size needed

14-29

Pitfall: The clone method Makes a Shallow
Copy

 When a deep copy of an ArrayList is needed, using
the clone method is not sufficient
 Invoking clone on an ArrayList object produces a

shallow copy, not a deep copy

 In order to make a deep copy, it must be possible to
make a deep copy of objects of the base type
 Then a deep copy of each element in the ArrayList can

be created and placed into a new ArrayList object

14-30

The Vector Class

 The Java standard libraries have a class named
Vector that behaves almost exactly the same
as the class ArrayList

 In most situations, either class could be used
 However the ArrayList class is newer, and is

becoming the preferred class

14-31

Parameterized Classes and Generics

 The class ArrayList is a parameterized class

 It has a parameter, denoted by Base_Type, that can
be replaced by any reference type to obtain a class for
ArrayLists with the specified base type

 Starting with version 5.0, Java allows class definitions
with parameters for types
 These classes that have type parameters are called

parameterized class or generic definitions, or, simply, generics

14-32

Nonparameterized ArrayList and Vector
Classes

 The ArrayList and Vector classes
discussed here have a type parameter for the
base type

 There are also ArrayList and Vector
classes with no parameter whose base type is
Object
 These classes are left over from earlier versions of

Java

14-33

Generics

 Classes and methods can have a type parameter
 A type parameter can have any reference type (i.e., any class

type) plugged in for the type parameter

 When a specific type is plugged in, this produces a specific
class type or method

 Traditionally, a single uppercase letter, i.e. T, is used for a
type parameter, but any non-keyword identifier may be used

14-34

Generics
 A class definition with a type parameter is stored in a

file and compiled just like any other class

 Once a parameterized class is compiled, it can be used
like any other class
 However, the class type plugged in for the type parameter

must be specified before it can be used in a program

 Doing this is said to instantiate the generic class
Sample<String> s1 =
 new Sample<String>();

See Generic1.java

14-35

http://www.aimanhanna.com/concordia/comp249/Generic1.java.doc

A Class Definition with a Type
Parameter

14-36

Class Definition with a Type Parameter

 A class that is defined with a parameter for a type is
called a generic class or a parameterized class
 The type parameter is included in angular brackets, < >,

after the class name in the class definition heading

 Any non-keyword identifier can be used for the type
parameter, but by convention, the parameter starts with an
uppercase letter

 The type parameter can be used like other types used in the
definition of a class

14-37

Tip: Compile with the -Xlint Option

 There are many pitfalls that can be encountered
when using type parameters

 Compiling with the -Xlint option will
provide more informative diagnostics of any
problems or potential problems in the code
javac –Xlint Sample.java

14-38

A Generic Ordered Pair Class
(Part 1 of 4)

14-39

A Generic Ordered Pair
Class (Part 2 of 4)

14-40

A Generic Ordered Pair Class
(Part 3 of 4)

14-41

A Generic Ordered Pair
Class (Part 4 of 4)

14-42

Using Our Ordered Pair
Class (Part 1 of 3)

14-43

Using Our Ordered Pair
Class (Part 2 of 3)

14-44

Using Our Ordered Pair
Class (Part 3 of 3)

14-45

Pitfall: A Generic Constructor Name Has No
Type Parameter

 Although the class name in a parameterized class definition has a
type parameter attached, the type parameter is not used in the
heading of the constructor definition; i.e. the constructor is not
defined as follows:

public Pair<T>()

 A constructor can use the type parameter as the type for a
parameter of the constructor, but still, the angular brackets are
not used

public Pair(T first, T second)
 However, when a generic class is instantiated, the angular

brackets are to be used used
Pair<String> pair =
 new Pair<STring>("Happy", "Day");

14-46

Pitfall: A Primitive Type Cannot be Plugged
in for a Type Parameter

 The type plugged in for a type parameter must
always be a reference type
 It cannot be a primitive type such as int, double,

or char
 However, now that Java has automatic boxing, this is

not a big restriction
 Note: reference types can include arrays

14-47

Automatic Boxing (Part 1 of 3)

14-48

Automatic Boxing (Part 2 of 3)

14-49

Automatic Boxing (Part 3 of 3)

14-50

Pitfall: A Class Definition Can Have More
Than One Type Parameter

 A generic class definition can have any number
of type parameters
 Multiple type parameters are listed in angular

brackets just as in the single type parameter case, but
are separated by commas

14-51

Example of Multiple Type Parameters
 (Part 1 of 4)

14-52

Example of Multiple Type Parameters
 (Part 2 of 4)

14-53

14-54

Example of Multiple Type Parameters
 (Part 3 of 4)

14-55

Example of Multiple Type Parameters
 (Part 4 of 4)

 See Generic2.java
 See Generic3.java
 See Generic4.java

Notice
Carefully

http://www.aimanhanna.com/concordia/comp249/Generic2.java.doc
http://www.aimanhanna.com/concordia/comp249/Generic3.java.doc
http://www.aimanhanna.com/concordia/comp249/Generic4.java.doc

Using a Generic Class with Two
Type Parameters (Part 1 of 2)

14-56

Using a Generic Class with Two
Type Parameters (Part 2 of 2)

14-57

Pitfall: A Generic Class Cannot Be an
Exception Class

 It is not permitted to create a generic class with
Exception, Error, Throwable, or any
descendent class of Throwable
 A generic class cannot be created whose objects are

throwable
public class GEx<T> extends Exception

 The above example will generate a compiler error
message

14-58

Bounds for Type Parameters
 Sometimes it makes sense to restrict the possible types that can

be plugged in for a type parameter T
 For instance,

 to ensure that only classes that implement the Comparable
interface are plugged in for T, define a class as follows:

public class RClass<T extends Comparable>
 to ensure that only classes that are descendent of the Vehicle

class are plugged in for T, define a class as follows:
public class RClass<T extends Vehicle>

 "extends" serves as a bound on the type parameter T
 Any attempt to plug in a type for T which does not follow

the restriction would result in a compiler error
 Notice that "extends" is used for both classes and interfaces (i.e. it is not

 public class RClass<T implements Comparable>

14-59

Bounds for Type Parameters
 A bounds expression may contain multiple interfaces and up to

one class

 If there is more than one type parameter, the syntax is as follows:
public class Two<T1 extends Class1, T2 extends
Class2 & Comparable>

14-60

A Bounded Type Parameter

14-61

Tip: Generic Interfaces

 An interface can have one or more type
parameters

 The details and notation are the same as they are
for classes with type parameters

14-62

Generic Methods
 When a generic class is defined, the type parameter can

be used in the definitions of the methods for that
generic class

 In addition, a generic method can be defined that has
its own type parameter that is not the type parameter of
any class
 A generic method can be a member of an ordinary class or a

member of a generic class that has some other type parameter
 The type parameter of a generic method is local to that

method, not to the class

14-63

Generic Methods

 The type parameter must be placed (in angular
brackets) after all the modifiers, and before the returned
type
public static <T> T genMethod(T[] a)

 When one of these generic methods is invoked, the
method name is prefaced with the type to be plugged
in, enclosed in angular brackets
String s = NonG.<String>genMethod(c);

See Generic5.java
14-64

http://www.aimanhanna.com/concordia/comp249/Generic5.java.doc

Inheritance with Generic Classes
 A generic class can be defined as a derived class of an

ordinary class or of another generic class
 As in ordinary classes, an object of the subclass type would

also be of the superclass type

 Given two classes: A and B, and given G: a generic
class, there is no relationship between G<A> and G
 This is true regardless of the relationship between class A and
B, e.g., if class B is a subclass of class A

See Generic6.java

14-65

http://www.aimanhanna.com/concordia/comp249/Generic6.java.doc

A Derived Generic Class
(Part 1 of 2)

14-66

A Derived Generic Class
(Part 2 of 2)

14-67

Using UnorderedPair (Part 1 of 2)

14-68

Using UnorderedPair (Part 2 of 2)

14-69

Pitfall: Restrictions with Generics
A Type Parameter Cannot Be Used

Everywhere a Type Name Can Be Used
 Within the definition of a parameterized class

definition, there are places where an ordinary class
name would be allowed, but a type parameter is not
allowed

 In particular, the type parameter cannot be used in
simple expressions using new to create a new object
 For instance, the type parameter cannot be used as a

constructor name or like a constructor:
T object = new T();
T[] a = new T[10];

14-70

Pitfall: Pitfall: Restrictions with Generics
An Instantiation of a Generic Class

Cannot be an Array Base Type
 Arrays such as the following are illegal:

Pair<String>[] a =
 new Pair<String>[10];

 Although this is a reasonable thing to want to do, it
is not allowed given the way that Java implements
arrays and generic classes differently; for instance,
 Java, by design, requires arrays at run-time to include information

about their contents;
 This conflicts with Java design of generics, where the generic type is

not known at run-time, which directly contradicts the requirements of
arrays!

See Generic7.java
14-71

http://www.aimanhanna.com/concordia/comp249/Generic7.java.doc

Pitfall: Pitfall: Restrictions with Generics
An Instantiation of a Generic Class

Cannot be an Array Base Type

 However, it is possible that the parameter passed to
the generic class is by itself an object of that class

 For instance: ArrayList<ArrayList<Car>> aTable =
new ArrayList<ArrayList<Car>>(3);

See ArrayList6.java

14-72

http://www.aimanhanna.com/concordia/comp249/ArrayList6.java.doc

Generic Wildcards
 Wildcards are used to cast a collection of a class to:

 A collection of a subclass; or
 A collection of a superclass

 The Unknown Wildcard:
 List<?> : The list is typed/related to an unknown object

 The extends Wildcard – (Covariance)
List<? extends A>

 The super Wildcard –(Contravariance)
List<? super A>

14-73

Generic Wildcards
 The extends Wildcard – (Covariance)

List<? extends A>

 The super Wildcard –(Contravariance)
List<? super A>

14-74

? extends T means the generic type can be T or any subtype of T.
It is read-only in terms of type safety: you can safely read elements from the collection as T (or its
supertype).
You cannot add elements, because the exact subtype is unknown to the compiler.
Usage:
Use ? extends when you want to read from a collection but do not need to modify it.

? super T means the generic type can be T or any supertype of T.
It is write-friendly: you can add elements of type T or its subtypes.
You can only read elements as Object, because the specific type of elements in the collection is
unknown to the compiler.
Usage:
Use ? super when you want to write to a collection but don’t need to read specific types from it.

	Slide Number 1
	Introduction to Generics
	The ArrayList Class
	The ArrayList Class
	The ArrayList Class
	Using the ArrayList Class
	Using the ArrayList Class
	Using the ArrayList Class
	Using the ArrayList Class
	Tip: Summary of Adding to an ArrayList
	Tip: Summary of Adding to an ArrayList
	Tip: Summary of Adding to an ArrayList
	Methods in the Class ArrayList
	Some Methods in the Class ArrayList (Part 1 of 11)
	Some Methods in the Class ArrayList (Part 2 of 11)
	Some Methods in the Class ArrayList (Part 3 of 11)
	Some Methods in the Class ArrayList (Part 4 of 11)
	Some Methods in the Class ArrayList (Part 5 of 11)
	Some Methods in the Class ArrayList (Part 6 of 11)
	Some Methods in the Class ArrayList (Part 7 of 11)
	Some Methods in the Class ArrayList (Part 8 of 11)
	Conversion between ArrayList and arrays
	Some Methods in the Class ArrayList (Part 9 of 11)
	Some Methods in the Class ArrayList (Part 10 of 11)
	Some Methods in the Class ArrayList (Part 11 of 11)
	Why are Some Parameters of Type Base_Type and Others of type Object
	The "For Each" Loop
	Passing ArrayList as Method Parameters
	Tip: Use trimToSize to Save Memory
	Pitfall: The clone method Makes a Shallow Copy
	The Vector Class
	Parameterized Classes and Generics
	Nonparameterized ArrayList and Vector Classes
	Generics
	Generics
	A Class Definition with a Type Parameter
	Class Definition with a Type Parameter
	Tip: Compile with the -Xlint Option
	A Generic Ordered Pair Class (Part 1 of 4)
	A Generic Ordered Pair Class (Part 2 of 4)
	A Generic Ordered Pair Class (Part 3 of 4)
	A Generic Ordered Pair Class (Part 4 of 4)
	Using Our Ordered Pair Class (Part 1 of 3)
	Using Our Ordered Pair Class (Part 2 of 3)
	Using Our Ordered Pair Class (Part 3 of 3)
	Pitfall: A Generic Constructor Name Has No Type Parameter
	Pitfall: A Primitive Type Cannot be Plugged in for a Type Parameter
	Automatic Boxing (Part 1 of 3)
	Automatic Boxing (Part 2 of 3)
	Automatic Boxing (Part 3 of 3)
	Pitfall: A Class Definition Can Have More Than One Type Parameter
	Example of Multiple Type Parameters� (Part 1 of 4)
	Example of Multiple Type Parameters� (Part 2 of 4)
	Example of Multiple Type Parameters� (Part 3 of 4)
	Example of Multiple Type Parameters� (Part 4 of 4)
	Using a Generic Class with Two Type Parameters (Part 1 of 2)
	Using a Generic Class with Two Type Parameters (Part 2 of 2)
	Pitfall: A Generic Class Cannot Be an Exception Class
	Bounds for Type Parameters
	Bounds for Type Parameters
	A Bounded Type Parameter
	Tip: Generic Interfaces
	Generic Methods
	Generic Methods
	Inheritance with Generic Classes
	A Derived Generic Class �(Part 1 of 2)
	A Derived Generic Class �(Part 2 of 2)
	Using UnorderedPair (Part 1 of 2)
	Using UnorderedPair (Part 2 of 2)
	Pitfall: Restrictions with Generics�A Type Parameter Cannot Be Used Everywhere a Type Name Can Be Used
	Pitfall: Pitfall: Restrictions with Generics�An Instantiation of a Generic Class �Cannot be an Array Base Type
	Pitfall: Pitfall: Restrictions with Generics�An Instantiation of a Generic Class �Cannot be an Array Base Type
	Generic Wildcards
	Generic Wildcards

