
Comp 249

Programming Methodology
Chapter 13

Interfaces & Inner Classes
Dr. Aiman Hanna

Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2023 Aiman Hanna

All rights reserved

Interfaces

 An interface is something like an extreme case of an abstract class

 However, an interface is not a class

 It is a type that can be satisfied by any class that implements the
interface

 The syntax for defining an interface is similar to that of defining
a class

 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that
implements the interface must have

 It contains method headings and constant definitions only*

 It contains no instance variables nor any complete method
definitions

* In Java 8, interfaces are allowed to have default methods as well.

13-2

Interfaces

 An interface serves a function similar to a base

class, though it is not a base class

 Some languages allow one class to be derived from

two or more different base classes

 This multiple inheritance is not allowed in Java

 Instead, Java's way of approximating multiple

inheritance is through interfaces

13-3

Interfaces

 An interface and all of its method headings should be
declared public

 They cannot be given private, protected, or package
access

 When a class implements an interface, it must make all
the methods in the interface public

 Because an interface is a type, a method may be written
with a parameter of an interface type

 That parameter will accept as an argument any class
that implements the interface

See Interfaces1.java

13-4

http://www.aimanhanna.com/concordia/comp249/Interfaces1.java.docx

The Ordered Interface

13-5

Interfaces

 To implement an interface, a concrete class must do two things:
1. It must include the phrase

implements Interface_Name

at the start of the class definition

– If more than one interface is implemented, each is listed, separated
by commas

2. The class must implement all the method headings listed in
the definition(s) of the interface(s)

 Note the use of Object as the parameter type in the
following examples

13-6

Implementation of an Interface

13-7

Implementation of an Interface

13-8

Abstract Classes Implementing Interfaces

 Abstract classes may implement one or more

interfaces

 Any method headings given in the interface are

made into abstract methods

 A concrete class must give definitions for all the

method headings given in the abstract class and

the interface

13-9

An Abstract Class Implementing an Interface

13-10

Derived Interfaces

 Like classes, an interface may be derived from a base

interface

 This is called extending the interface

 The derived interface must include the phrase

extends BaseInterfaceName

 A concrete class that implements a derived interface

must have definitions for any methods in the derived

interface, as well as any methods in the base interface

13-11

Extending an Interface

13-12

Pitfall: Interface Semantics Are Not Enforced

 When a class implements an interface, the compiler and
run-time system check the syntax of the interface and its
implementation

 However, neither checks that the body of an interface is
consistent with its intended meaning

 Required semantics for an interface are normally added to
the documentation for an interface

 It then becomes the responsibility of each programmer
implementing the interface to follow the semantics

 If the method body does not satisfy the specified semantics,
then software written for classes that implement the
interface may not work correctly

13-13

Defined Constants in Interfaces

 An interface can contain defined constants in addition

to, or instead of, method headings

 Any variables defined in an interface must be public, static,

and final

 Because this is understood, Java allows these modifiers to be

omitted

 Any class that implements the interface has access to

these defined constants

13-14

Pitfall: Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from different

definitions having the same method heading

 In addition, a class may implement any number of
interfaces
 Since interfaces do not have method bodies, the above

problem cannot arise

 However, there are other types of inconsistencies that can
arise

See Interfaces2.java

13-15

http://www.aimanhanna.com/concordia/comp249/Interfaces2.java.docx

Pitfall: Inconsistent Interfaces

 When a class implements two interfaces:

 One type of inconsistency will occur if the interfaces have
constants with the same name, but with different values
 Can this case still be resolved? See Interfaces2.java

 Another type of inconsistency will occur if the interfaces
contain methods with the same name but different return
types

 If a class definition implements two inconsistent
interfaces, then that is an error, and the class definition
is illegal

13-16

http://www.aimanhanna.com/concordia/comp249/Interfaces2.java.docx

The Serializable Interface

 An extreme but commonly used example of an

interface is the Serializable interface

 It has no method headings and no defined constants:

It is completely empty

 It is used merely as a type tag that indicates to the

system that it may implement file I/O in a particular

way

13-17

The Cloneable Interface

 The Cloneable interface is another unusual

example of a Java interface

 It does not contain method headings or defined

constants

 It is used to indicate how the method clone

(inherited from the Object class) should be used

and redefined

13-18

The Cloneable Interface

 The method Object.clone() does a bit-by-
bit copy of the object's data in storage

 If the data is all primitive type data or data of
immutable class types (such as String), then this
is adequate
 This is the simple case

 The following is an example of a simple class that
has no instance variables of a mutable class type,
and no specified base class
 So the base class is Object

13-19

Implementation of the Method clone:

Simple Case

13-20

The Cloneable Interface

 If the data in the object to be cloned includes instance
variables whose type is a mutable class, then the simple
implementation of clone would cause a privacy leak

 When implementing the Cloneable interface for a class
like this:

 First invoke the clone method of the base class
Object (or whatever the base class is)

 Then reset the values of any new instance variables
whose types are mutable class types

 This is done by making copies of the instance variables
by invoking their clone methods

 See Interfaces3.java See Interfaces4.java

 See Interfaces5.java See Interfaces6.java
13-21

http://www.aimanhanna.com/concordia/comp249/Interfaces3.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces4.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces5.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces6.java.docx

The Cloneable Interface

 Note that this will work properly only if the

Cloneable interface is implemented

properly for the classes to which the

instance variables belong

 And for the classes to which any of the

instance variables of the above classes belong

(i.e. composition), and so on and so forth

 The following shows an example

13-22

Implementation of the Method clone:

Harder Case

13-23

Inner Classes

 Inner classes are classes defined within other
classes

 The class that includes the inner class is called the
outer class

 There is no particular location where the definition
of the inner class (or classes) must be place within
the outer class

 Placing it first or last, however, will guarantee that it
is easy to find

13-24

Simple Uses of Inner Classes

 An inner class definition is a member of the outer class
in the same way that the instance variables and methods
of the outer class are members

 An inner class is local to the outer class definition

 The name of an inner class may be reused for
something else outside the outer class definition

 If the inner class is private, then the inner class
cannot be accessed by name outside the definition of
the outer class

13-25

Simple Uses of Inner Classes

 There are two main advantages to inner classes
 They can make the outer class more self-contained

since they are defined inside a class

 Both of their methods have access to each other's
private methods and instance variables

 Using an inner class as a helping class is one of the
most useful applications of inner classes
 If used as a helping class, an inner class should be

marked private

13-26

Tip: Inner and Outer Classes Have Access

to Each Other's Private Members

 Within the definition of a method of an inner class:
 It is legal to reference a private instance variable of the outer class

 It is legal to invoke a private method of the outer class

 Within the definition of a method of the outer class
 It is legal to reference a private instance variable of the inner class on an

object of the inner class

 It is legal to invoke a (nonstatic) method of the inner class as long as an
object of the inner class is used as a calling object

 So, within the definition of the inner or outer classes, the
modifiers public and private are equivalent

13-27

Class with an Inner Class

13-28

Class with an Inner Class

13-29

Class with an Inner Class

13-30

The .class File for an Inner

Class
 Compiling any class in Java produces a .class file

named ClassName.class

 Compiling a class with one (or more) inner classes

causes both (or more) classes to be compiled, and

produces two (or more) .class files

 Such as ClassName.class and

ClassName$InnerClassName.class

13-31

Static Inner Classes

 A normal inner class has a connection between its
objects and the outer class object that created the inner
class object
 This allows an inner class definition to reference an instance

variable, or invoke a method of the outer class

 There are certain situations, however, when an inner
class must be static
 If an object of the inner class is created within a static

method of the outer class

 If the inner class must have static members

13-32

Static Inner Classes

 Since a static inner class has no connection to an object
of the outer class, within an inner class method

 Instance variables of the outer class cannot be
referenced

 Nonstatic methods of the outer class cannot be
invoked

 To invoke a static method or to name a static variable
of a static inner class within the outer class, preface
each with the name of the inner class and a dot

13-33

Public Inner Classes

 If an inner class is marked public, then it can be
used outside of the outer class

 In the case of a nonstatic inner class, it must be
created using an object of the outer class

BankAccount account = new BankAccount();

BankAccount.Money amount =

account.new Money("41.99");

 Note that the prefix account. must come before new

 The new object amount can now invoke methods from
the inner class, but only from the inner class

13-34

Public Inner Classes

 In the case of a static inner class, the

procedure is similar to, but simpler than, that

for nonstatic inner classes
OuterClass.InnerClass innerObject =

new OuterClass.InnerClass();

 Note that all of the following are acceptable
innerObject.nonstaticMethod();

innerObject.staticMethod();

OuterClass.InnerClass.staticMethod();

13-35

Tip: Referring to a Method of the Outer Class

 If a method is invoked in an inner class
 If the inner class has no such method, then it is assumed to

be an invocation of the method of that name in the outer
class

 If both the inner and outer class have a method with the
same name, then it is assumed to be an invocation of the
method in the inner class

 If both the inner and outer class have a method with the
same name, and the intent is to invoke the method in the
outer class, then the following invocation must be used:
OuterClassName.this.methodName()

See InnerClasses1.java

13-36

http://www.aimanhanna.com/concordia/comp249/InnerClasses1.java.docx

Nesting Inner Classes

 It is legal to nest inner classes within inner classes

 The rules are the same as before, but the names get longer

 Given class A, which has public inner class B, which has

public inner class C, then the following is valid:

A aObject = new A();

A.B bObject = aObject.new B();

A.B.C cObject = bObject.new C();

13-37

Inner Classes and Inheritance

 Given an OuterClass that has an InnerClass

 Any DerivedClass of OuterClass will automatically

have InnerClass as an inner class

 In this case, the DerivedClass cannot override the

InnerClass

 An outer class can be a derived class

 An inner class can be a derived class also

13-38

Anonymous Classes

 If an object is to be created, but there is no need to
name the object's class, then an anonymous class
definition can be used

 An anonymous class enables us to declare and
instantiate a class on the fly, hence makes the code
concise.

 These types of classes can be useful when there is an
need to use a local class only once; hence there is no
need to give a name to that class.

13-39

Anonymous Classes

 The class definition is embedded inside the
expression with the new operator

 Anonymous classes are sometimes used when they are
to be assigned to a variable of another type

 The other type must be such that an object of the
anonymous class is also an object of the other type

 The other type is usually a Java interface

 See AnonymousClasses1.java
13-40

http://www.aimanhanna.com/concordia/comp249/StaticInnerClasses1.java.docx
http://www.aimanhanna.com/concordia/comp249/AnonymousClasses1..java.docx

Anonymous Classes

13-41

Anonymous Classes

13-42

Anonymous Classes

13-43

