
Comp 249

Programming Methodology
Chapter 13

Interfaces & Inner Classes
Dr. Aiman Hanna

Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2023 Aiman Hanna

All rights reserved

Interfaces

 An interface is something like an extreme case of an abstract class

 However, an interface is not a class

 It is a type that can be satisfied by any class that implements the
interface

 The syntax for defining an interface is similar to that of defining
a class

 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that
implements the interface must have

 It contains method headings and constant definitions only*

 It contains no instance variables nor any complete method
definitions

* In Java 8, interfaces are allowed to have default methods as well.

13-2

Interfaces

 An interface serves a function similar to a base

class, though it is not a base class

 Some languages allow one class to be derived from

two or more different base classes

 This multiple inheritance is not allowed in Java

 Instead, Java's way of approximating multiple

inheritance is through interfaces

13-3

Interfaces

 An interface and all of its method headings should be
declared public

 They cannot be given private, protected, or package
access

 When a class implements an interface, it must make all
the methods in the interface public

 Because an interface is a type, a method may be written
with a parameter of an interface type

 That parameter will accept as an argument any class
that implements the interface

See Interfaces1.java

13-4

http://www.aimanhanna.com/concordia/comp249/Interfaces1.java.docx

The Ordered Interface

13-5

Interfaces

 To implement an interface, a concrete class must do two things:
1. It must include the phrase

implements Interface_Name

at the start of the class definition

– If more than one interface is implemented, each is listed, separated
by commas

2. The class must implement all the method headings listed in
the definition(s) of the interface(s)

 Note the use of Object as the parameter type in the
following examples

13-6

Implementation of an Interface

13-7

Implementation of an Interface

13-8

Abstract Classes Implementing Interfaces

 Abstract classes may implement one or more

interfaces

 Any method headings given in the interface are

made into abstract methods

 A concrete class must give definitions for all the

method headings given in the abstract class and

the interface

13-9

An Abstract Class Implementing an Interface

13-10

Derived Interfaces

 Like classes, an interface may be derived from a base

interface

 This is called extending the interface

 The derived interface must include the phrase

extends BaseInterfaceName

 A concrete class that implements a derived interface

must have definitions for any methods in the derived

interface, as well as any methods in the base interface

13-11

Extending an Interface

13-12

Pitfall: Interface Semantics Are Not Enforced

 When a class implements an interface, the compiler and
run-time system check the syntax of the interface and its
implementation

 However, neither checks that the body of an interface is
consistent with its intended meaning

 Required semantics for an interface are normally added to
the documentation for an interface

 It then becomes the responsibility of each programmer
implementing the interface to follow the semantics

 If the method body does not satisfy the specified semantics,
then software written for classes that implement the
interface may not work correctly

13-13

Defined Constants in Interfaces

 An interface can contain defined constants in addition

to, or instead of, method headings

 Any variables defined in an interface must be public, static,

and final

 Because this is understood, Java allows these modifiers to be

omitted

 Any class that implements the interface has access to

these defined constants

13-14

Pitfall: Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from different

definitions having the same method heading

 In addition, a class may implement any number of
interfaces
 Since interfaces do not have method bodies, the above

problem cannot arise

 However, there are other types of inconsistencies that can
arise

See Interfaces2.java

13-15

http://www.aimanhanna.com/concordia/comp249/Interfaces2.java.docx

Pitfall: Inconsistent Interfaces

 When a class implements two interfaces:

 One type of inconsistency will occur if the interfaces have
constants with the same name, but with different values
 Can this case still be resolved? See Interfaces2.java

 Another type of inconsistency will occur if the interfaces
contain methods with the same name but different return
types

 If a class definition implements two inconsistent
interfaces, then that is an error, and the class definition
is illegal

13-16

http://www.aimanhanna.com/concordia/comp249/Interfaces2.java.docx

The Serializable Interface

 An extreme but commonly used example of an

interface is the Serializable interface

 It has no method headings and no defined constants:

It is completely empty

 It is used merely as a type tag that indicates to the

system that it may implement file I/O in a particular

way

13-17

The Cloneable Interface

 The Cloneable interface is another unusual

example of a Java interface

 It does not contain method headings or defined

constants

 It is used to indicate how the method clone

(inherited from the Object class) should be used

and redefined

13-18

The Cloneable Interface

 The method Object.clone() does a bit-by-
bit copy of the object's data in storage

 If the data is all primitive type data or data of
immutable class types (such as String), then this
is adequate
 This is the simple case

 The following is an example of a simple class that
has no instance variables of a mutable class type,
and no specified base class
 So the base class is Object

13-19

Implementation of the Method clone:

Simple Case

13-20

The Cloneable Interface

 If the data in the object to be cloned includes instance
variables whose type is a mutable class, then the simple
implementation of clone would cause a privacy leak

 When implementing the Cloneable interface for a class
like this:

 First invoke the clone method of the base class
Object (or whatever the base class is)

 Then reset the values of any new instance variables
whose types are mutable class types

 This is done by making copies of the instance variables
by invoking their clone methods

 See Interfaces3.java See Interfaces4.java

 See Interfaces5.java See Interfaces6.java
13-21

http://www.aimanhanna.com/concordia/comp249/Interfaces3.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces4.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces5.java.docx
http://www.aimanhanna.com/concordia/comp249/Interfaces6.java.docx

The Cloneable Interface

 Note that this will work properly only if the

Cloneable interface is implemented

properly for the classes to which the

instance variables belong

 And for the classes to which any of the

instance variables of the above classes belong

(i.e. composition), and so on and so forth

 The following shows an example

13-22

Implementation of the Method clone:

Harder Case

13-23

Inner Classes

 Inner classes are classes defined within other
classes

 The class that includes the inner class is called the
outer class

 There is no particular location where the definition
of the inner class (or classes) must be place within
the outer class

 Placing it first or last, however, will guarantee that it
is easy to find

13-24

Simple Uses of Inner Classes

 An inner class definition is a member of the outer class
in the same way that the instance variables and methods
of the outer class are members

 An inner class is local to the outer class definition

 The name of an inner class may be reused for
something else outside the outer class definition

 If the inner class is private, then the inner class
cannot be accessed by name outside the definition of
the outer class

13-25

Simple Uses of Inner Classes

 There are two main advantages to inner classes
 They can make the outer class more self-contained

since they are defined inside a class

 Both of their methods have access to each other's
private methods and instance variables

 Using an inner class as a helping class is one of the
most useful applications of inner classes
 If used as a helping class, an inner class should be

marked private

13-26

Tip: Inner and Outer Classes Have Access

to Each Other's Private Members

 Within the definition of a method of an inner class:
 It is legal to reference a private instance variable of the outer class

 It is legal to invoke a private method of the outer class

 Within the definition of a method of the outer class
 It is legal to reference a private instance variable of the inner class on an

object of the inner class

 It is legal to invoke a (nonstatic) method of the inner class as long as an
object of the inner class is used as a calling object

 So, within the definition of the inner or outer classes, the
modifiers public and private are equivalent

13-27

Class with an Inner Class

13-28

Class with an Inner Class

13-29

Class with an Inner Class

13-30

The .class File for an Inner

Class
 Compiling any class in Java produces a .class file

named ClassName.class

 Compiling a class with one (or more) inner classes

causes both (or more) classes to be compiled, and

produces two (or more) .class files

 Such as ClassName.class and

ClassName$InnerClassName.class

13-31

Static Inner Classes

 A normal inner class has a connection between its
objects and the outer class object that created the inner
class object
 This allows an inner class definition to reference an instance

variable, or invoke a method of the outer class

 There are certain situations, however, when an inner
class must be static
 If an object of the inner class is created within a static

method of the outer class

 If the inner class must have static members

13-32

Static Inner Classes

 Since a static inner class has no connection to an object
of the outer class, within an inner class method

 Instance variables of the outer class cannot be
referenced

 Nonstatic methods of the outer class cannot be
invoked

 To invoke a static method or to name a static variable
of a static inner class within the outer class, preface
each with the name of the inner class and a dot

13-33

Public Inner Classes

 If an inner class is marked public, then it can be
used outside of the outer class

 In the case of a nonstatic inner class, it must be
created using an object of the outer class

BankAccount account = new BankAccount();

BankAccount.Money amount =

account.new Money("41.99");

 Note that the prefix account. must come before new

 The new object amount can now invoke methods from
the inner class, but only from the inner class

13-34

Public Inner Classes

 In the case of a static inner class, the

procedure is similar to, but simpler than, that

for nonstatic inner classes
OuterClass.InnerClass innerObject =

new OuterClass.InnerClass();

 Note that all of the following are acceptable
innerObject.nonstaticMethod();

innerObject.staticMethod();

OuterClass.InnerClass.staticMethod();

13-35

Tip: Referring to a Method of the Outer Class

 If a method is invoked in an inner class
 If the inner class has no such method, then it is assumed to

be an invocation of the method of that name in the outer
class

 If both the inner and outer class have a method with the
same name, then it is assumed to be an invocation of the
method in the inner class

 If both the inner and outer class have a method with the
same name, and the intent is to invoke the method in the
outer class, then the following invocation must be used:
OuterClassName.this.methodName()

See InnerClasses1.java

13-36

http://www.aimanhanna.com/concordia/comp249/InnerClasses1.java.docx

Nesting Inner Classes

 It is legal to nest inner classes within inner classes

 The rules are the same as before, but the names get longer

 Given class A, which has public inner class B, which has

public inner class C, then the following is valid:

A aObject = new A();

A.B bObject = aObject.new B();

A.B.C cObject = bObject.new C();

13-37

Inner Classes and Inheritance

 Given an OuterClass that has an InnerClass

 Any DerivedClass of OuterClass will automatically

have InnerClass as an inner class

 In this case, the DerivedClass cannot override the

InnerClass

 An outer class can be a derived class

 An inner class can be a derived class also

13-38

Anonymous Classes

 If an object is to be created, but there is no need to
name the object's class, then an anonymous class
definition can be used

 An anonymous class enables us to declare and
instantiate a class on the fly, hence makes the code
concise.

 These types of classes can be useful when there is an
need to use a local class only once; hence there is no
need to give a name to that class.

13-39

Anonymous Classes

 The class definition is embedded inside the
expression with the new operator

 Anonymous classes are sometimes used when they are
to be assigned to a variable of another type

 The other type must be such that an object of the
anonymous class is also an object of the other type

 The other type is usually a Java interface

 See AnonymousClasses1.java
13-40

http://www.aimanhanna.com/concordia/comp249/StaticInnerClasses1.java.docx
http://www.aimanhanna.com/concordia/comp249/AnonymousClasses1..java.docx

Anonymous Classes

13-41

Anonymous Classes

13-42

Anonymous Classes

13-43

