
Comp 249

Programming Methodology
Chapter 11 – Recursion

Prof. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2023 Aiman Hanna

All rights reserved

Recursive void Methods

 A recursive method is a method that includes a

call to itself

 Recursion is based on the general problem

solving technique of breaking down a task into

subtasks

 In particular, recursion can be used whenever one

subtask is a smaller version of the original task

See Recursion1.java

11-2

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call

 When the call to the (recursive) method is triggered ,

the execution of the current call is suspended

 The execution of the current call is resumed once

that new call returns

 Similarly, if the new method invocation triggers a

new call to the method, the execution is suspended

until that later call returns, and so on

11-3

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

11-4

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

11-5

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

11-6

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

A Closer Look at Recursion

 The computer keeps track of recursive calls as follows:

 When a method is called, the computer plugs in the

arguments for the parameter(s), and starts executing the code

 If it encounters a recursive call, it temporarily stops its

computation

 When the recursive call is completed, the computer returns to

finish the outer computation

11-7

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

A Closer Look at Recursion

 When the computer encounters a recursive call, it must
temporarily suspend its execution of a method
 It does this because it must know the result of the recursive call

before it can proceed

 It saves all the information it needs to continue the
computation later on, when it returns from the recursive call

 Ultimately, this entire process terminates when one of
the recursive calls does not depend upon recursion to
return

11-8

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

General Form of a Recursive Method

Definition

 The general outline of a successful recursive method

definition is as follows:

 One or more cases that include one or more recursive calls to

the method being defined

 These recursive calls should solve "smaller" versions of the task

performed by the method being defined

 One or more cases that include no recursive calls: base cases

or stopping cases

11-9

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pitfall: Infinite Recursion

 When recursion is used, the series of recursive calls
should eventually reach a call of the method that
did not involve recursion (a stopping case)

 If, instead, every recursive call had produced
another recursive call, then a call to that method
would, in theory, run forever
 This is called infinite recursion

 In practice, such a method runs until the computer runs
out of resources, and the program terminates abnormally

See Recursion2.java

11-10

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 To keep track of recursion (and other things), most
computer systems use a stack
 A stack is a very specialized kind of memory structure

analogous to a container that holds stack of paper

 As an analogy, there is also an inexhaustible supply of sheets
of paper

 A new sheet is added to the stack by placing it on top of the
stack (on top of all previous sheets in the stack

 Getting an older sheet out from the stack would require that
all the ones on top be first removed (more accurately
removed and thrown away)

11-11

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 Since the last sheet put on the stack is the first sheet

that can be taken off the stack, a stack is called a last-

in/first-out memory structure (LIFO)

 Following the previous analogy, to keep track of
recursion, whenever a method is called, a new sheet of
paper is taken
 The method definition is copied onto this sheet, and the

arguments are plugged in for the method parameters

 The computer starts to execute the method body

 When it encounters a recursive call, it stops the computation
in order to make the recursive call

 It writes information about the current method on the sheet of
paper, and places it on the stack

11-12

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 A new sheet of paper is then used for the recursive
call

 The computer writes a second copy of the method,
plugs in the arguments, and starts to execute its body

 When this copy gets to a recursive call, its
information is saved on the stack also, and a new
sheet of paper is used for the new recursive call

11-13

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 This process continues until some recursive call to the
method completes its computation without producing any
more recursive calls

 Its sheet of paper is then discarded

 Then the computer goes to the top sheet of paper on the stack

 This sheet contains the partially completed computation
that is waiting for the recursive computation that just
ended

 Now it is possible to proceed with that suspended
computation

11-14

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 After the suspended computation ends, the computer
discards its corresponding sheet of paper (the one on
top)

 The suspended computation that is below it on the
stack now becomes the computation on top of the
stack

 This process continues until the computation on the
bottom sheet is completed

11-15

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 Depending on how many recursive calls are made, and
how the method definition is written, the stack may
grow and shrink in any fashion

 The stack of paper analogy has its counterpart in the
computer
 The contents of one of the sheets of paper is called a stack frame

or activation record

 The stack frames don't actually contain a complete copy of
the method definition, but reference a single copy instead

11-16

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pitfall: Stack Overflow

 There is always some limit to the size of the stack
 If there is a long chain in which a method makes a call to

itself, and that call makes another recursive call, . . . , and so
forth, there will be many suspended computations placed on
the stack

 If there are too many, then the stack will attempt to grow
beyond its limit, resulting in an error condition known as a
stack overflow

 A common cause of stack overflow is infinite recursion

See Recursion3.java

11-17

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursion Versus Iteration

 Recursion is not absolutely necessary

 Any task that can be done using recursion can also be done in
a nonrecursive manner

 A nonrecursive version of a method is called an iterative version

 An iteratively written method will typically use loops of
some sort in place of recursion

 A recursively written method can be simpler, but will
usually run slower and use more storage than an
equivalent iterative version

11-18

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursive Methods that Return a Value

 Recursion is not limited to void methods

 A recursive method can return a value of any type

 An outline for a successful recursive method that returns a value
is as follows:
 One or more cases in which the value returned is computed in terms of

calls to the same method

 the arguments for the recursive calls should be intuitively "smaller"

 One or more cases in which the value returned is computed without the
use of any recursive calls (the base or stopping cases)

See Recursion4.java

See Recursion5.java

11-19

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Thinking Recursively

 If a problem lends itself to recursion, it is more

important to think of it in recursive terms, rather than

concentrating on the stack and the suspended

computations

power(x,n) returns power(x, n-1) * x

 In specific, power(x, n) is the same as

power(x, n-1) * x for n > 0

 When n = 0, then power(x, n) should return

1, This is the stopping case

11-20

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Thinking Recursively

1. There is no infinite recursion
– Every chain of recursive calls must reach a stopping case

2. Each stopping case returns the correct value for that case

3. For the cases that involve recursion: if all recursive calls return
the correct value, then the final value returned by the method is
the correct value

 These properties follow a technique also known as mathematical
induction

11-21

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursive Design Techniques

 The same rules can be applied to a recursive
void method:

1. There is no infinite recursion

2. Each stopping case performs the correct action for
that case

3. For each of the cases that involve recursion: if all
recursive calls perform their actions correctly, then
the entire case performs correctly

11-22

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 Binary search uses a recursive method to search a
sorted array to find a specified value

 The array must be a sorted array; that is:

a[0] ≤ a[1] ≤a [2] ≤. . . ≤ a[n-1]

 If the value is found, its index is returned

 If the value is not found, -1 is returned

 Note: Each execution of the recursive method reduces
the search space by about a half

11-23

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 An algorithm to solve this task looks at the middle of

the array or array segment first

 If the value looked for is in that index, then return it

and the search is over

 If the value looked for is smaller than the value in the

middle of the array

 Then the second half of the array or array segment can be

ignored

 This strategy is then applied to the first half of the array or

array segment

11-24

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 If the value looked for is larger than the value in the middle of
the array or array segment
 Then the first half of the array or array segment can be ignored

 This strategy is then applied to the second half of the array or array
segment

 If the entire array (or array segment) has been searched in this
way without finding the value, then it is not in the array, so
return -1 (indicating that there is no index for that value)

See Recursion6.java

11-25

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pseudocode for Binary Search

11-26

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Execution of the Method search –

An Example – Part 1 of 2

11-27

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Execution of the Method search –

An Example – Part 2 of 2

11-28

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

1. There is no infinite recursion

• On each recursive call, the value of startIndex

is increased, or the value of endIndex is

decreased

• If the chain of recursive calls does not end in some

other way, then eventually the method will be

called with startIndex larger than endIndex

11-29

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

2. Each stopping case performs the correct
action for that case

• If startIndex > endIndex, there are no
array elements between A[startIndex] and
a[endIndex], so v is not in this segment of
the array, and result is correctly set to -1

• If v == A[mid], result is correctly set to
mid

11-30

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

3. For each of the cases that involve recursion, if all
recursive calls perform their actions correctly, then the
entire case performs correctly

• If v < A[mid], then v must be one of the elements
A[startIndex] through A[mid-1], or it is not in the
array

• The method should then search only those elements, which
it does

• The recursive call is correct, therefore the entire action is
correct

11-31

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

• If v > A[mid], then v must be one of the elements
a[mid+1] through a[endIndex], or it is not in the
array

• The method should then search only those elements, which
it does

• The recursive call is correct, therefore the entire action is
correct

The method search passes all three tests:

Therefore, it is a good recursive method definition

11-32

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Efficiency of Binary Search

 The binary search algorithm is extremely fast

compared to an algorithm that tries all array

elements in order

 About half the array is eliminated from

consideration right at the start

 Then a quarter of the array, then an eighth of the

array, and so forth

11-33

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Efficiency of Binary Search

 Given an array with 1,000 elements, the binary search will only
need to compare about 10 array elements to the key value, as
compared to an average of 500 for a serial search algorithm

 The binary search algorithm has a worst-case running time that is
logarithmic: O(log n)

 A serial search algorithm is linear with a worst-case running time of O(n)

 If desired, the recursive version of the method search can be
converted to an iterative version

See Recursion7.java

11-34

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

