Comp 249

Programming Methodology

 Chapter 11 - RecursionProf. Aiman Hanna

Department of Computer Science \& Software Engineering Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley
Copyright © 2023 Aiman Hanna
All rights reserved

[^0]
Recursive void Methods

- A recursive method is a method that includes a call to itself
- Recursion is based on the general problem solving technique of breaking down a task into subtasks
- In particular, recursion can be used whenever one subtask is a smaller version of the original task

See Recursion1.java

Tracing a Recursive Call

- When the call to the (recursive) method is triggered, the execution of the current call is suspended
- The execution of the current call is resumed once that new call returns
- Similarly, if the new method invocation triggers a new call to the method, the execution is suspended until that later call returns, and so on

Tracing a Recursive Call An Example

Tracing a Recursive Call An Example

Tracing a Recursive Call An Example

```
if (123 < 10)
{
    System.out.println(123);
}
else //n is two or more digits long:
{
writeVertical(123/10);
    System.out.println(123%10);
}
```


A Closer Look at Recursion

- The computer keeps track of recursive calls as follows:
- When a method is called, the computer plugs in the arguments for the parameter(s), and starts executing the code
- If it encounters a recursive call, it temporarily stops its computation
- When the recursive call is completed, the computer returns to finish the outer computation

A Closer Look at Recursion

- When the computer encounters a recursive call, it must temporarily suspend its execution of a method
- It does this because it must enom the result of the recursive call before it can proceed.
- It saves all the information it needs to continue the computation later on, when it returns from the recursive call
- Ultimately, this entire process terminates when one of the recursive calls does not depend upon recursion to return

General Form of a Recursive Method Definition

- The general outline of a successful recursive method definition is as follows:
- One or more cases that include one or more recursive calls to the method being defined
\lrcorner These recursive calls should solve "smaller" versions of the task performed by the method being defined
- One or more cases that include no recursive calls: base cases or stopping cases

Pitfall: Infinite Recursion

- When recursion is used, the series of recursive calls should eventually reach a call of the method that did not involve recursion (a stopping case)
- If, instead, every recursive call had produced another recursive call, then a call to that method would, in theory, run forever
- This is called infenute recursion
- In practice, such a method runs until the computer runs out of resources, and the program terminates abnomally

See Recursion2.java

Stacks for Recursion
To keep track of recursion (and other things), most computer systems use a stack

- A stack is a very specialized kind of memory structure analogous to a container that holds stack of paper
- As an analogy, there is also an inexhaustible supply of sheets of paper
- A new sheet is added to the stack by placing it on top of the stack (on top of all previous sheets in the stack
- Getting an older sheet out from the stack would require that all the ones on top be first removed (more accurately removed and thrown away)

Stacks for Recursion

- Since the last sheet put on the stack is the first sheet that can be taken off the stack, a stack is called a lastin/ ferst-out memory structure (LIFO)
- Following the previous analogy, to keep track of recursion, whenever a method is called, a newn sheet of papper is taken
- The method definition is copied onto this sheet, and the arguments are plugged in for the method parameters
- The computer starts to execute the method body
- When it encounters a recursive call, it stops the computation in order to make the recursive call
- It writes information about the current method on the sheet of paper, and places it on the stack

Stacks for Recursion

- A new sbeet of paper is then used for the recursive call
- The computer writes a second copy of the method, plugs in the arguments, and starts to execute its body
- When this copy gets to a recursive call, its information is saved on the stack also, and a new sheet of paper is used for the new recursive call

Stacks for Recursion

- This process continues until some recursive call to the method completes its computation without producing any more recursive calls
- Its sheet of paper is then discarded
- Then the computer goes to the top sheet of patper on the stack
- This sheet contains the partially completed computation that is waiting for the recursive computation that just ended
- Now it is possible to proceed with that suspended computation

Stacks for Recursion

- After the suspended computation ends, the computer discards its corresponding sheet of paper (the one on top)
- The suspended computation that is below it on the stack now becomes the computation on top of the stack
- This process continues until the computation on the bottom sheet is completed

Stacks for Recursion

- Depending on how many recursive calls are made, and how the method definition is written, the stack may grow and shrink in any fashion
- The stack of paper analogy has its counterpait in the computer
- The contents of one of the sheets of paper is called a staoke, firame or antiuation recorad
- The stack frames don't actually contain a complete copy of the method definition, but reference a single copy instead

Pitfall: Stack Overflow

- There is always some limit to the size of the stack - If there is a long chain in which a method makes a call to itself, and that call makes another recursive call, . . . , and so forth, there will be many suspended computations placed on the stack
- If there are too many, then the stack will attempt to grow beyond its limit, resulting in an error condition known as a stack oneriflom
- A common cause of stack overflow is infinite recursion

See Recursion3.java

Recursion Versus Itepation

- Recursion is not absolutely necessary
- Any task that can be done using recursion can also be done in a nonrecursive manner
- A nonrecursive version of a method is called an iterative version
- An iteratively written method will typically use loops of some sort in place of recursion
- A recursively written method can be simpler, but will usually run slower and use more storage than an equivalent iterative version

Recursive Methods that Return a Value

- Recursion is not limited to void methods
- A recursive method can return a value of any type
- An outline for a successful recursive method that returns a value is as follows:
- One or more cases in which the value returned is compured in terms of calls to the same method
- the arguments for the recursive calls should be intuitively "smaller"
- One or more cases in which the value returned is computed without the use of any recursive calls (the base or stopping cases)

See Recursion4.java
 See Recursion5.java

Thinking. Recursively

- If a problem lends itself to recursion, it is more important to think of it in recursive terms, rather than concentrating on the stack and the suspended computations
power (x, n) returns power $(x, n-1) * x$
- In specific, power $(\boldsymbol{x}, \boldsymbol{\Omega})$ is the same as power $(x, n-1)$ * x for $n>0$
- When $\Omega=0$, then power (x, Ω) should return

1, This is the stopping case

Thinking Recursively

1. There is no infinite recursion

- Every chain of recursive calls must reach a stopping case

2. Each stopping case retums the correct value for that case
3. For the cases that involve recursion: if all recursive calls return the correct value, them the final value returned by the method is the correct value

- These properties follow a technique also known as mathematical induction

Recursive Design Techniques
The same rules can be applied to a recursive void method:

1. There is no infinite recursion
2. Each stopping case performs the correct action for that case
3. For each of the cases that involve recursion: if all recursive calls perform their actions correctly, then the entire case performs correctly

Binary Search

- Binary search uses a recursive method to search a sorted array to find a specified value
- The array must be a sorted array; that is: $a[0] \leq a[1] \leq a[2] \leq . . \quad \leq a[n-1]$
- If the value is found, its index is retumed
- If the value is not found, -1 is returned
- Note: Each execution of the recursive method reduces the search space by about a half

Binary Search

- An algorithm to solve this task looks at the middlle of the array or array segment first
- If the value looked for is in that index, then return it and the search is over
- If the value looked for is smaller than the value in the middlle of the array
- Then the second half of the array or array segment can be ignored
- This strategy is then applied to the first half of the array or array segment

Binary Search

- If the value looked for is larger than the value in the middlle of the array or array segment
- Then the first half of the array or array segment can be ignored
- This strategy is then applied to the second half of the amray or ampay segment
- If the entire array (or array segment) has been searched in this way without finding the value, then it is not in the array, so return-1 (indicating that there is no index for that value)

See Recursion6.java

Pseudocode for Binary Search

Display 11.5 Pseudocode for Binary Search *

ALGORITHM TO SEARCH a[first] THROUGH a[last]

```
/**
    Precondition:
    a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
*/
```

TO LOCATE THE VALUE KEY:

```
if (first > last) //A stopping case
    return -1;
else
{
    mid = approximate midpoint between first and last;
    if (key == a[mid]) //A stopping case
        return mid;
    else if key < a[mid] //A case with recursion
        return the result of searching a[first] through a[mid - 1];
    else if key > a[mid] //A case with recursion
        return the result of searching a[mid + 1] through a[last];
    }
```

Execution of the Method search -

An Example - Part 1 of 2

Display 11.7 Execution of the Method search \$

key is 63

Execution of the Method search -

An Example - Part 2 of 2

Display 11.7 Execution of the Method search $\$ \quad$ (continued)

Checking the search Method

1. There is no infinite recursion

- On each recursive call, the value of startIndex is increased, or the value of endIndex is decreased
- If the chain of recursive calls does not end in some other way, then eventually the method will be called with startIndex larger than endIndex

Checking the search Method

2. Each stopping case performs the correct action for that case

- If startIndex $>$ endIndex, there are no array elements between $\boldsymbol{A}[s t a r t I n d e x]$ and a [endIndex], so v is not in this segment of the array, and result is correctly set to $\mathbf{- 1}$
- If $\boldsymbol{v}=\mathbf{A}[m i d]$, result is correctly set to raid

Checking the search Method

3. For each of the cases that involve recursion, if all recursive calls perform their actions correctly, then the entire case performs comectly

- If $v<\mathbb{A}[m i d]$, then v must be one of the elements A [startIndex] through \mathbf{A} [mid-1], or it is not in the arreay
- The method should then search only those elements, which it does
- The recursive call is correct, therefore the entire action is correct

Checking the search Method

- If $\boldsymbol{v}>\boldsymbol{A}[m i d]$, then v must be one of the elements $a[m i d+1]$ through a [endIndex], of it is not in the arreay
- The method should then search only those elements, which it does
- The recursive call is correct, therefore the entire action is correct

The method search passes all three tests:
Therefore, it is a good recursive method definition

Efficiency of Binary Search

- The binary search algorithm is extremely fast compared to an algorithm that tries all array elements in order
- About half the array is eliminated from consideration right at the start
- Then a quarter of the array, then an eighth of the array, and so forth

Efficiency of Binary Search

- Given an array with 1,000 elements, the binary search will only need to compare about 10 array elements to the key value, as compared to an average of 500 for a serial search algorithm
- The binary search algorithm has a worst-case running time that is logarithmic: $O(\log n)$
- A serial search algorthm is linear with a worst-case running time of $O(n)$
- If desired, the recursive version of the method search can be converted to an iterative version

See Recursion7.java

[^0]: PEARSON
 Addison
 Wesley

