
Comp 249

Programming Methodology
Chapter 11 – Recursion

Prof. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2023 Aiman Hanna

All rights reserved

Recursive void Methods

 A recursive method is a method that includes a

call to itself

 Recursion is based on the general problem

solving technique of breaking down a task into

subtasks

 In particular, recursion can be used whenever one

subtask is a smaller version of the original task

See Recursion1.java

11-2

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call

 When the call to the (recursive) method is triggered ,

the execution of the current call is suspended

 The execution of the current call is resumed once

that new call returns

 Similarly, if the new method invocation triggers a

new call to the method, the execution is suspended

until that later call returns, and so on

11-3

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

11-4

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

11-5

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

11-6

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Tracing a Recursive Call –

An Example

A Closer Look at Recursion

 The computer keeps track of recursive calls as follows:

 When a method is called, the computer plugs in the

arguments for the parameter(s), and starts executing the code

 If it encounters a recursive call, it temporarily stops its

computation

 When the recursive call is completed, the computer returns to

finish the outer computation

11-7

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

A Closer Look at Recursion

 When the computer encounters a recursive call, it must
temporarily suspend its execution of a method
 It does this because it must know the result of the recursive call

before it can proceed

 It saves all the information it needs to continue the
computation later on, when it returns from the recursive call

 Ultimately, this entire process terminates when one of
the recursive calls does not depend upon recursion to
return

11-8

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

General Form of a Recursive Method

Definition

 The general outline of a successful recursive method

definition is as follows:

 One or more cases that include one or more recursive calls to

the method being defined

 These recursive calls should solve "smaller" versions of the task

performed by the method being defined

 One or more cases that include no recursive calls: base cases

or stopping cases

11-9

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pitfall: Infinite Recursion

 When recursion is used, the series of recursive calls
should eventually reach a call of the method that
did not involve recursion (a stopping case)

 If, instead, every recursive call had produced
another recursive call, then a call to that method
would, in theory, run forever
 This is called infinite recursion

 In practice, such a method runs until the computer runs
out of resources, and the program terminates abnormally

See Recursion2.java

11-10

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 To keep track of recursion (and other things), most
computer systems use a stack
 A stack is a very specialized kind of memory structure

analogous to a container that holds stack of paper

 As an analogy, there is also an inexhaustible supply of sheets
of paper

 A new sheet is added to the stack by placing it on top of the
stack (on top of all previous sheets in the stack

 Getting an older sheet out from the stack would require that
all the ones on top be first removed (more accurately
removed and thrown away)

11-11

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 Since the last sheet put on the stack is the first sheet

that can be taken off the stack, a stack is called a last-

in/first-out memory structure (LIFO)

 Following the previous analogy, to keep track of
recursion, whenever a method is called, a new sheet of
paper is taken
 The method definition is copied onto this sheet, and the

arguments are plugged in for the method parameters

 The computer starts to execute the method body

 When it encounters a recursive call, it stops the computation
in order to make the recursive call

 It writes information about the current method on the sheet of
paper, and places it on the stack

11-12

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 A new sheet of paper is then used for the recursive
call

 The computer writes a second copy of the method,
plugs in the arguments, and starts to execute its body

 When this copy gets to a recursive call, its
information is saved on the stack also, and a new
sheet of paper is used for the new recursive call

11-13

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 This process continues until some recursive call to the
method completes its computation without producing any
more recursive calls

 Its sheet of paper is then discarded

 Then the computer goes to the top sheet of paper on the stack

 This sheet contains the partially completed computation
that is waiting for the recursive computation that just
ended

 Now it is possible to proceed with that suspended
computation

11-14

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 After the suspended computation ends, the computer
discards its corresponding sheet of paper (the one on
top)

 The suspended computation that is below it on the
stack now becomes the computation on top of the
stack

 This process continues until the computation on the
bottom sheet is completed

11-15

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Stacks for Recursion

 Depending on how many recursive calls are made, and
how the method definition is written, the stack may
grow and shrink in any fashion

 The stack of paper analogy has its counterpart in the
computer
 The contents of one of the sheets of paper is called a stack frame

or activation record

 The stack frames don't actually contain a complete copy of
the method definition, but reference a single copy instead

11-16

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pitfall: Stack Overflow

 There is always some limit to the size of the stack
 If there is a long chain in which a method makes a call to

itself, and that call makes another recursive call, . . . , and so
forth, there will be many suspended computations placed on
the stack

 If there are too many, then the stack will attempt to grow
beyond its limit, resulting in an error condition known as a
stack overflow

 A common cause of stack overflow is infinite recursion

See Recursion3.java

11-17

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursion Versus Iteration

 Recursion is not absolutely necessary

 Any task that can be done using recursion can also be done in
a nonrecursive manner

 A nonrecursive version of a method is called an iterative version

 An iteratively written method will typically use loops of
some sort in place of recursion

 A recursively written method can be simpler, but will
usually run slower and use more storage than an
equivalent iterative version

11-18

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursive Methods that Return a Value

 Recursion is not limited to void methods

 A recursive method can return a value of any type

 An outline for a successful recursive method that returns a value
is as follows:
 One or more cases in which the value returned is computed in terms of

calls to the same method

 the arguments for the recursive calls should be intuitively "smaller"

 One or more cases in which the value returned is computed without the
use of any recursive calls (the base or stopping cases)

See Recursion4.java

See Recursion5.java

11-19

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Thinking Recursively

 If a problem lends itself to recursion, it is more

important to think of it in recursive terms, rather than

concentrating on the stack and the suspended

computations

power(x,n) returns power(x, n-1) * x

 In specific, power(x, n) is the same as

power(x, n-1) * x for n > 0

 When n = 0, then power(x, n) should return

1, This is the stopping case

11-20

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Thinking Recursively

1. There is no infinite recursion
– Every chain of recursive calls must reach a stopping case

2. Each stopping case returns the correct value for that case

3. For the cases that involve recursion: if all recursive calls return
the correct value, then the final value returned by the method is
the correct value

 These properties follow a technique also known as mathematical
induction

11-21

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Recursive Design Techniques

 The same rules can be applied to a recursive
void method:

1. There is no infinite recursion

2. Each stopping case performs the correct action for
that case

3. For each of the cases that involve recursion: if all
recursive calls perform their actions correctly, then
the entire case performs correctly

11-22

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 Binary search uses a recursive method to search a
sorted array to find a specified value

 The array must be a sorted array; that is:

a[0] ≤ a[1] ≤a [2] ≤. . . ≤ a[n-1]

 If the value is found, its index is returned

 If the value is not found, -1 is returned

 Note: Each execution of the recursive method reduces
the search space by about a half

11-23

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 An algorithm to solve this task looks at the middle of

the array or array segment first

 If the value looked for is in that index, then return it

and the search is over

 If the value looked for is smaller than the value in the

middle of the array

 Then the second half of the array or array segment can be

ignored

 This strategy is then applied to the first half of the array or

array segment

11-24

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Binary Search

 If the value looked for is larger than the value in the middle of
the array or array segment
 Then the first half of the array or array segment can be ignored

 This strategy is then applied to the second half of the array or array
segment

 If the entire array (or array segment) has been searched in this
way without finding the value, then it is not in the array, so
return -1 (indicating that there is no index for that value)

See Recursion6.java

11-25

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Pseudocode for Binary Search

11-26

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Execution of the Method search –

An Example – Part 1 of 2

11-27

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Execution of the Method search –

An Example – Part 2 of 2

11-28

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

1. There is no infinite recursion

• On each recursive call, the value of startIndex

is increased, or the value of endIndex is

decreased

• If the chain of recursive calls does not end in some

other way, then eventually the method will be

called with startIndex larger than endIndex

11-29

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

2. Each stopping case performs the correct
action for that case

• If startIndex > endIndex, there are no
array elements between A[startIndex] and
a[endIndex], so v is not in this segment of
the array, and result is correctly set to -1

• If v == A[mid], result is correctly set to
mid

11-30

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

3. For each of the cases that involve recursion, if all
recursive calls perform their actions correctly, then the
entire case performs correctly

• If v < A[mid], then v must be one of the elements
A[startIndex] through A[mid-1], or it is not in the
array

• The method should then search only those elements, which
it does

• The recursive call is correct, therefore the entire action is
correct

11-31

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Checking the search Method

• If v > A[mid], then v must be one of the elements
a[mid+1] through a[endIndex], or it is not in the
array

• The method should then search only those elements, which
it does

• The recursive call is correct, therefore the entire action is
correct

The method search passes all three tests:

Therefore, it is a good recursive method definition

11-32

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Efficiency of Binary Search

 The binary search algorithm is extremely fast

compared to an algorithm that tries all array

elements in order

 About half the array is eliminated from

consideration right at the start

 Then a quarter of the array, then an eighth of the

array, and so forth

11-33

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

Efficiency of Binary Search

 Given an array with 1,000 elements, the binary search will only
need to compare about 10 array elements to the key value, as
compared to an average of 500 for a serial search algorithm

 The binary search algorithm has a worst-case running time that is
logarithmic: O(log n)

 A serial search algorithm is linear with a worst-case running time of O(n)

 If desired, the recursive version of the method search can be
converted to an iterative version

See Recursion7.java

11-34

Copyright © 2008 Pearson Addison-

Wesley. All rights reserved

