
Comp 249

Programming Methodology
Chapter 10 – File I/O

Prof. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Streams

 A stream is an object that enables the flow of

data between a program and some I/O device

or file

 If the data flows into a program, then the stream is

called an input stream

 If the data flows out of a program, then the stream is

called an output stream

10-2

Streams

 Input streams can flow from the keyboard or from a
file

 System.in is an input stream that connects to the
keyboard
Scanner kb = new Scanner(System.in);

 Output streams can flow to a screen or to a file

 System.out is an output stream that connects to the
screen

System.out.println("Output stream");

10-3

Text Files and Binary Files

 Files that are designed to be read by human beings, and

that can be read or written with an editor are called text

files

 Text files can also be called ASCII (American Standard Code

for Information Interchange) files because the data they

contain uses an ASCII encoding scheme

 An advantage of text files is that the are usually the same on

all computers, so that they can move from one computer to

another

10-4

Text Files and Binary Files

 Files that are designed to be read by programs and that
consist of a sequence of binary digits are called binary
files
 Binary files are designed to be read on the same type of

computer and with the same programming language as the
computer that created the file

 An advantage of binary files is that they are more efficient to
process than text files

 Unlike most binary files, Java binary files have the advantage
of being platform independent also

10-5

Writing to a Text File

 The class PrintWriter is a stream class that

can be used to write to a text file

 An object of the class PrintWriter has the

methods print and println

 These are similar to the System.out methods of

the same names, but are used for text file output, not

screen output

10-6

Writing to a Text File

 All the file I/O classes that follow are in the package java.io

 So, a program that uses PrintWriter will start with a set of
import statements:
import java.io.PrintWriter;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

 The class PrintWriter has no constructor that takes a file
name as its argument
 It uses another class, FileOutputStream, to convert a file name to

an object that can be used as the argument to its (the PrintWriter)
constructor

10-7

Writing to a Text File

 A stream of the class PrintWriter is created and

connected to a text file for writing as follows:

PrintWriter pw;

pw = new PrintWriter(new

FileOutputStream(FileName));

 The class FileOutputStream takes a string representing the file

name as its argument

 The class PrintWriter takes the anonymous FileOutputStream

object as its argument

10-8

Writing to a Text File

 This produces an object of the class PrintWriter
that is connected to the file FileName
 The process of connecting a stream to a file is called opening

the file

 If the file already exists, then doing this causes the old
contents to be lost

 If the file does not exist, then a new, empty file named
FileName is created

 After doing this, the methods print and println
can be used to write to the file

10-9

Writing to a Text File

 When a text file is opened this way, a
FileNotFoundException may be thrown
 In this context it actually means that the file could not be created

 This type of exception can also be thrown when a program attempts
to open a file for reading and there is no such file

 It is therefore necessary to enclose this code in exception
handling blocks
 The file should be opened inside a try block

 A catch block should catch and handle the possible exception

 The variable that refers to the PrintWriter object should be
declared outside the block (and initialized to null) so that it is not
local to the block

10-10

Writing to a Text File

 When a program is finished writing to a file, it should

always close the stream connected to that file; i.e.

pw.close();

 This allows the system to release any resources used to

connect the stream to the file

 If the program does not close the file before the program

ends, Java will close it automatically, but data loss may occur

10-11

Writing to a Text File

 Output streams connected to files are usually buffered

 Rather than physically writing to the file as soon as possible,
the data is saved in a temporary location (buffer)

 When enough data accumulates, or when the method flush
is invoked, the buffered data is written to the file all at once

 This is more efficient, since physical writes to a file can be
slow

10-12

Writing to a Text File

 The method close invokes the method flush, thus
insuring that all the data is written to the file

 If a program relies on Java to close the file, and the program
terminates abnormally, then any output that was buffered
may not get written to the file

 Also, if a program writes to a file and later reopens it to read
from the same file, it will have to be closed first anyway

 The sooner a file is closed after writing to it, the less likely it
is that there will be a problem

10-13

File Names

 The rules for how file names should be formed
depend on a given operating system, not Java

 When a file name is given to a Java constructor for a
stream, it is just a string, not a Java identifier (e.g.,
"fileName.txt")

 Any suffix used, such as .txt has no special
meaning to a Java program

10-14

A File Has Two Names

 Every input file and every output file used by a
program has two names:

1. The real file name used by the operating system

2. The name of the stream that is connected to the file

 The actual file name is used to connect to the stream

 The stream name serves as a temporary name for the
file, and is the name that is primarily used within the
program

See FileIO1.java

10-15

http://www.aimanhanna.com/concordia/comp249/FileIO1.java.doc
http://www.aimanhanna.com/concordia/comp249/FileIO1.java.doc

IOException

 When performing file I/O there are many situations in which an
exception, such as FileNotFoundException, may be
thrown

 Many of these exception classes are subclasses of the class
IOException

 The class IOException is the root class for a variety of exception
classes having to do with input and/or output

 These exception classes are all checked exceptions
 Therefore, they must be caught or declared in a throws clause

See FileIO2.java

10-16

http://www.aimanhanna.com/concordia/comp249/FileIO2.java.doc

Pitfall: a try Block is a Block

 Since opening a file can result in an exception, it should be
placed inside a try block

 If the variable for a PrintWriter object needs to be used
outside that block, then the variable must be declared outside the
block
 Otherwise it would be local to the block, and could not be used elsewhere

 If it were declared in the block and referenced elsewhere, the compiler
will generate a message indicating that it is an undefined identifier

10-17

Appending to a Text File

 To create a PrintWriter object and connect it
to a text file for appending, a second argument, set
to true, must be used in the constructor for the
FileOutputStream object

outputStreamName = new PrintWriter(new
FileOutputStream(FileName, true));

 After this statement, the methods print, println
and/or printf can be used to write to the file

 The new text will be written after the old text in the file

See FileIO3.java

10-18

http://www.aimanhanna.com/concordia/comp249/FileIO3.java.doc

toString Helps with Text File Output

 If a class has a suitable toString() method, and

anObject is an object of that class, then anObject

can be used as an argument to

System.out.println, and it will produce

sensible output

 The same thing applies to the methods print and

println of the class PrintWriter

outputStreamName.println(anObject);

10-19

Reading From a Text File Using Scanner

 The class Scanner can be used for reading from the keyboard
as well as reading from a text file
 Simply replace the argument System.in (to the Scanner

constructor) with a suitable stream that is connected to the text file

Scanner sc =

new Scanner(new FileInputStream(FileName));

 Methods of the Scanner class for reading input behave the
same, whether reading from the keyboard or reading from a text
file
 For example, the nextInt and nextLine methods

See FileIO4.java

10-20

http://www.aimanhanna.com/concordia/comp249/FileIO4.java.doc

Testing for the End of a Text File with

Scanner

 A program that tries to read beyond the end of a
file using methods of the Scanner class will cause
an exception to be thrown

 However, instead of having to rely on an exception
to signal the end of a file, the Scanner class
provides methods such as hasNextInt and
hasNextLine

 These methods can also be used to check that the next
token to be input is a suitable element of the appropriate
type

See FileIO5.java

See FileIO6.java

10-21

http://www.aimanhanna.com/concordia/comp249/FileIO5.java.doc
http://www.aimanhanna.com/concordia/comp249/FileIO6.java.doc

Using both Input & Output Files

 Both input and output files are often used within
the same program

 All input and output files should always be closed,
using the close() method, after the program is
done utilizing them

See FileIO7.java

See FileIO8.java

10-22

http://www.aimanhanna.com/concordia/comp249/FileIO7.java.doc
http://www.aimanhanna.com/concordia/comp249/FileIO8.java.doc

Methods in the Class Scanner

(Part 1 of 11)

10-23

Methods in the Class Scanner

(Part 2 of 11)

10-24

Methods in the Class Scanner

(Part 3 of 11)

10-25

Methods in the Class Scanner

(Part 4 of 11)

10-26

Methods in the Class Scanner

(Part 5 of 11)

10-27

Methods in the Class Scanner

(Part 6 of 11)

10-28

Methods in the Class Scanner

(Part 7 of 11)

10-29

Methods in the Class Scanner

(Part 8 of 11)

10-30

Methods in the Class Scanner

(Part 9 of 11)

10-31

Methods in the Class Scanner

(Part 10 of 11)

10-32

Methods in the Class Scanner

(Part 11 of 11)

10-33

Reading From a Text File Using

BufferedReader

 The class BufferedReader is a stream class that can be used
to read from a text file
 An object of the class BufferedReader has the methods read and
readLine

 A program using BufferedReader, like one using
PrintWriter, or Scanner will start with a set of import
statements:
import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

10-34

Reading From a Text File Using

BufferedReader

 Like the classes PrintWriter and Scanner,
BufferedReader has no constructor that takes a file
name as its argument
 It needs to use another class, FileReader, to convert the file

name to an object that can be used as an argument to its (the
BufferedReader) constructor

 A stream of the class BufferedReader is created and
connected to a text file as follows:
BufferedReader readerObject;

readerObject = new BufferedReader(new

FileReader(FileName));

 This opens the file for reading

10-35

Reading From a Text File

 After these statements, the methods read and
readLIne can be used to read from the file
 The readLine method is the same method used to read

from the keyboard, but in this case it would read from a file

 The read method reads a single character, and returns a
value (of type int) that corresponds to the character read

 Since the read method does not return the character itself, a
type cast must be used:
char next = (char)(readerObject.read());

10-36

Reading From a Text File

 A program using a BufferedReader object in

this way may throw two kinds of exceptions

 An attempt to open the file may throw a

FileNotFoundException (which in this case has

the expected meaning)

 An invocation of readLine may throw an

IOException

 Both of these exceptions should be handled

See FileIO9.java

10-37

http://www.aimanhanna.com/concordia/comp249/FileIO9.java.doc

Testing for the End of a Text File

 The method readLine of the class
BufferedReader returns null when it tries to
read beyond the end of a text file
 A program can test for the end of the file by testing for the

value null when using readLine

 The method read of the class BufferedReader
returns -1 when it tries to read beyond the end of a
text file
 A program can test for the end of the file by testing for the

value -1 when using read

10-38

Some Methods of the Class

BufferedReader (Part 1 of 2)

10-39

Some Methods of the Class

BufferedReader (Part 2 of 2)

10-40

Reading Numbers

 Unlike the Scanner class, the class BufferedReader
has no methods to read a number from a text file
 Instead, a number must be read in as a string, and then converted

to a value of the appropriate numeric type using one of the
wrapper classes

 To read in a single number on a line by itself, first use the method
readLine, and then use Integer.parseInt,
Double.parseDouble, etc. to convert the string into a
number

 If there are multiple numbers on a line, StringTokenizer
can be used to decompose the string into tokens, and then the
tokens can be converted as described above

10-41

Path Names

 When a file name is used as an argument to a

constructor for opening a file, it is assumed that

the file is in the same directory or folder as the

one in which the program is run

 If it is not in the same directory, the full or

relative path name must be given

10-42

Path Names

 A path name not only gives the name of the file,
but also the directory or folder in which the file
exists

 A full path name gives a complete path name,
starting from the root directory

 A relative path name gives the path to the file,
starting with the directory in which the program
is located

10-43

Path Names

 The way path names are specified depends on the

operating system

 A typical UNIX path name that could be used as a file name

argument is

"/user/Mike/Comp249/Assg2/data.txt"

 A BufferedReader input stream connected to this file is

created as follows:

BufferedReader inputStream =

new BufferedReader(new

FileReader("/user/Mike/Comp249/Assg2/data.txt"));

10-44

Path Names

 The Windows operating system specifies path names in a

different way

 An example of Windows path name is as follows:

C:\Concordia\Comp249\Assg2\data.txt

 A BufferedReader input stream connected to this file is created

as follows:

BufferedReader inputStream = new

BufferedReader(new FileReader

("C:\\Concordia\\Comp249\\Assg2\\data.txt"));

 Note that in Windows \\ must be used in place of \, since a single

backslash denotes an the beginning of an escape sequence

10-45

Path Names

 A double backslash (\\) must be used for a Windows path name enclosed
in a quoted string

 This problem does not occur with path names read in from the
keyboard

 Problems with escape characters can be avoided altogether by always
using UNIX conventions when writing a path name

BufferedReader inputStream = new

BufferedReader(new FileReader

("C:/Concordia/Comp249/Assg2/data.txt"));

 A Java program will accept a path name written in either Windows or
Unix format regardless of the operating system on which it is run

10-46

Nested Constructor Invocations

 Each of the Java I/O library classes serves only
one function, or a small number of functions

 Normally two or more class constructors are
combined to obtain full functionality

 Therefore, expressions with two constructors
are common when dealing with Java I/O classes

10-47

Nested Constructor Invocations

new BufferedReader(new FileReader("stuff.txt"))

 Above, the anonymous FileReader object establishes a

connection with the stuff.txt file

 However, it provides only very primitive methods for input

 The constructor for BufferedReader takes this

FileReader object and adds a richer collection of input

methods

 This transforms the inner object into an instance variable of the outer

object

10-48

System.in, System.out, and

System.err

 The standard streams System.in, System.out, and
System.err are automatically available to every Java program
 System.out is used for normal screen output

 System.err is used to output error messages to the screen

 The System class provides three methods (setIn, setOut,
and setErr) for redirecting these standard streams:

public static void setIn(InputStream inStream)

public static void setOut(PrintStream outStream)

public static void setErr(PrintStream outStream)

10-49

System.in, System.out, and

System.err

 Using these methods, any of the three standard streams
can be redirected
 For example, instead of appearing on the screen, error

messages could be redirected to a file

 In order to redirect a standard stream, a new stream
object is created
 Like other streams created in a program, a stream object used

for redirection must be closed after I/O is finished

 Note, standard streams do not need to be closed

10-50

System.in, System.out, and

System.err

 Redirecting System.err:

public void getInput()

{

. . .

PrintStream errStream = null;

try

{

errStream = new PrintStream(new

FileOuptputStream("errMessages.txt"));

System.setErr(errStream);

. . . //Set up input stream

}

10-51

System.in, System.out, and

System.err

catch(FileNotFoundException e)

{

System.err.println("Input file not found");

}

finally

{

. . .

errStream.close();

}

}

10-52

The File Class

 The File class is like a wrapper class for file names

 The constructor for the class File takes a name, (known as

the abstract name) as a string argument, and produces an object

that represents the file with that name

 The File object and methods of the class File can be

used to determine information about the file and its

properties

10-53

Some Methods in the Class File

(Part 1 of 5)

10-54

Some Methods in the Class File

(Part 2 of 5)

10-55

Some Methods in the Class File

(Part 3 of 5)

10-56

Some Methods in the Class File

(Part 4 of 5)

10-57

Some Methods in the Class File

(Part 5 of 5)

10-58

See FileIO10.java

See FileIO11.java

http://www.aimanhanna.com/concordia/comp249/FileIO11.java.doc
http://www.aimanhanna.com/concordia/comp249/FileIO11.java.doc

Binary Files

 Binary files store data in the same format used by
computer memory to store the values of variables
 No conversion needs to be performed when a value is stored

or retrieved from a binary file

 Java binary files, unlike other binary language files, are
portable
 A binary file created by a Java program can be moved from

one computer to another

 These files can then be read by a Java program, but only by a
Java program

10-59

Writing Simple Data to a Binary

File
 The class ObjectOutputStream is a stream class that can

be used to write to a binary file
 An object of this class has methods to write strings, values of primitive

types, and objects to a binary file

 A program using ObjectOutputStream needs to import
several classes from package java.io:
import java.io.ObjectOutputStream;

import java.io.FileOutStream;

import java.io.IOException;

10-60

Opening a Binary File for Output

 An ObjectOutputStream object is created and
connected to a binary file as follows:

ObjectOutputStream outputStreamName = new

ObjectOutputStream(new

FileOutputStream(FileName));

 The constructor for FileOutputStream may throw a
FileNotFoundException

 The constructor for ObjectOutputStream may throw
an IOException

 Each of these must be handled

10-61

Opening a Binary File for Output

 After opening the file, ObjectOutputStream methods can
be used to write to the file
 Methods used to output primitive values include writeInt,
writeDouble, writeChar, and writeBoolean

 UTF (Universal Transformation Format) is an encoding scheme
used to encode Unicode characters that favors the ASCII
character set

 The method writeUTF can be used to output values of type String

 The stream should always be closed after writing

See FileIO12.java

10-62

http://www.aimanhanna.com/concordia/comp249/FileIO12.java.doc

Some Methods in the Class

ObjectOutputStream (Part 1 of 5)

10-63

Some Methods in the Class

ObjectOutputStream (Part 2 of 5)

10-64

Some Methods in the Class

ObjectOutputStream (Part 3 of 5)

10-65

Some Methods in the Class

ObjectOutputStream (Part 4 of 5)

10-66

Some Methods in the Class

ObjectOutputStream (Part 5 of 5)

10-67

Reading Simple Data from a Binary File

 The class ObjectInputStream is a stream class that can be
used to read from a binary file
 An object of this class has methods to read strings, values of primitive

types, and objects from a binary file

 A program using ObjectInputStream needs to import
several classes from package java.io:
import java.io.ObjectInputStream;

import java.io.FileInputStream;

import java.io.IOException;

10-68

Opening a Binary File for

Reading
 An ObjectInputStream object is created and

connected to a binary file as follows:
ObjectInputStream inStreamName = new

ObjectInputStream(new

FileInputStream(FileName));

 The constructor for FileInputStream may throw a
FileNotFoundException

 The constructor for ObjectInputStream may throw an
IOException

 Each of these must be handled

10-69

Opening a Binary File for

Reading
 After opening the file, ObjectInputStream methods can

be used to read to the file
 Methods used to input primitive values include readInt,
readDouble, readChar, and readBoolean

 The method readUTF is used to input values of type String

 If the file contains multiple types, each item type must be read in
exactly the same order it was written to the file

 The stream should be closed after reading

See FileIO13.java

10-70

http://www.aimanhanna.com/concordia/comp249/FileIO13.java.doc

Some Methods in the Class ObjectInputStream

(Part 1 of 5)

10-71

Some Methods in the Class ObjectInputStream

(Part 2 of 5)

10-72

Some Methods in the Class ObjectInputStream

(Part 3 of 5)

10-73

Some Methods in the Class ObjectInputStream

(Part 4 of 5)

10-74

Some Methods in the Class ObjectInputStream

(Part 5 of 5)

10-75

Checking for the End of a Binary File the

Correct Way

 All of the ObjectInputStream methods that read
from a binary file throw an EOFException when
trying to read beyond the end of a file
 This can be used to end a loop that reads all the data in a file

 Note that different file-reading methods check for the
end of a file in different ways
 Testing for the end of a file in the wrong way can cause a

program to go into an infinite loop or terminate abnormally

10-76

The Serializable Interface

 In order to make a class serializable, simply add

implements Serializable to the

heading of the class definition
public class SomeClass implements Serializable

 If a class is Serializable, Java assigns a serial

number to objects of this class being written to a stream of

type ObjectOutputStream

10-77

The Serializable Interface

 When any of these objects is written to the same stream

more than once, then after the first time, only its serial

number is written, instead of the object full description ,

which is very efficient

 Why not all object are serializable?

 1) Security: the serial numbering system allows easier access to

objects on secondary storage through the serial numbers

 2) Sometimes, it does not make sense to write objects to secondary

storage at all; for instance if the object include system-specific data

 In such case, if the binary file is moved from one system to another then it is

actually senseless since the object information may no longer be valid

10-78

The Serializable Interface

 When a serializable class has instance variables of a

class type (that is composition), then all those classes

must also be serializable

10-79

Binary I/O of Objects

 If a class is serializable, objects of this class can also be input to
and output from a binary file
 The writeObject() method of the ObjectOutputStream class

is used to write an object to a binary file

 The readObject() method of the ObjectInputStream class is
usewd to read an object from a binary file

 In order to use the value returned by readObject() as an object of a
class, it must be type cast first:

Car c1 = (Car)objectInputStream.readObject();

 It is best to store the data of only one class type in any one file
 Storing objects of multiple class types or objects of one class type mixed

with primitives can lead to loss of data

See FileIO14.java

10-80

http://www.aimanhanna.com/concordia/comp249/FileIO14.java.doc

Array Objects in Binary Files

 Since an array is an object, arrays can also be read and
written to binary files using readObject and
writeObject

 If the base type is a class, then it must also be serializable, just
like any other class type

 Since readObject returns its value as type Object (like
any other object), it must be type cast to the correct array
type:

Car[] carArr =

(Car[])objectInputStream.readObject();

10-81

Random Access to Binary Files

 The streams for sequential access to files are the
ones most commonly used for file access in Java

 However, some applications require very rapid
access to records in very large databases

 These applications need to have random/direct
access to particular parts of a file

10-82

Random Reading and Writing to Files

 The stream class RandomAccessFile, which is in the
java.io package, provides both read and write random access
to a file in Java

 A random access file consists of a sequence of numbered bytes

 There is a kind of marker called the file pointer that is always
positioned at one of the bytes

 All reads and writes take place starting at the file pointer location

 The file pointer can be moved to a new location with the
method seek

10-83

Random Reading and Writing to Files

 Although a random access file is byte oriented, there
are methods that allow for reading or writing values of
the primitive types as well as string values to/from a
random access file

 These include readInt, readDouble, and readUTF
for input, and writeInt, writeDouble, and
writeUTF for output

 It does no have writeObject or readObject
methods, however

10-84

Opening a File

 The constructor for RandomAccessFile takes
either a string file name or an object of the class File
as its first argument

 The second argument must be one of four strings:
 "rw", meaning the code can both read and write to the file

after it is open

 "r", meaning the code can read form the file, but not write
to it

 "rws" or "rwd" (See Table of methods from
RandomAccessFile)

See FileIO15.java

10-85

http://www.aimanhanna.com/concordia/comp249/FileIO15.java.doc

Pitfall: A Random Access File Need Not Start

Empty

 If the file already exists, then when it is opened, the
length is not reset to 0, and the file pointer will be
positioned at the start of the file
 This ensures that old data is not lost, and that the file pointer

is set for the most likely position for reading (not writing)

 The length of the file can be changed with the
setLength method
 In particular, the setLength method can be used to empty

the file

10-86

Some Methods of the Class RandomAccessFile

(Part 1 of 7)

10-87

Some Methods of the Class RandomAccessFile

(Part 2 of 7)

10-88

Some Methods of the Class RandomAccessFile

(Part 3 of 7)

10-89

Some Methods of the Class RandomAccessFile

(Part 4 of 7)

10-90

Some Methods of the Class RandomAccessFile

(Part 5 of 7)

10-91

Some Methods of the Class RandomAccessFile

(Part 6 of 7)

10-92

Some Methods of the Class RandomAccessFile

(Part 7 of 7)

10-93

