
Comp 249

Programming Methodology
Chapter 8 - Polymorphism

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Introduction to Polymorphism

 There are three main programming mechanisms that
constitute object-oriented programming (OOP)

 Encapsulation

 Inheritance

 Polymorphism

 Polymorphism is the ability to associate many meanings
to one method name

 It does this through a special mechanism known as late binding
or dynamic binding

8-2

Introduction to Polymorphism

 Inheritance allows a base class to be defined, and other

classes derived from it

 Code for the base class can then be used for its own objects,

as well as objects of any derived classes

 Polymorphism allows changes to be made to method

definitions in the derived classes, and have those changes

apply to the software written for the base class

8-3

Late Binding

 The process of associating a method definition with a
method invocation is called binding

 If the method definition is associated with its
invocation when the code is compiled, that is called
early binding

 If the method definition is associated with its
invocation when the method is invoked (at run time),
that is called late binding or dynamic binding

8-4

Late Binding

 Java uses late binding for all methods (except private,
final, and static methods)

 Because of late binding, a method can be written in a
base class to perform a task, even if portions of that
task aren't yet defined

See Polymorphism1.java

8-5

http://www.aimanhanna.com/concordia/comp249/Polymorphism1.java.doc

Pitfall: No Late Binding for Static Methods

 When the decision of which definition of a method to
use is made at compile time, that is called static binding
 This decision is made based on the type of the variable naming the

object

 Java uses static, not late, binding with private, final,
and static methods
 In the case of private and final methods, late binding

would serve no purpose (these methods cannot be
overridden, so only one version exists)

 (Warning:) However, in the case of a static method invoked
using a calling object, it does make a difference

See Polymorphism2.java

8-6

http://www.aimanhanna.com/concordia/comp249/Polymorphism2.java.doc

Pitfall: No Late Binding for Static Methods

Example (See Polymorphism2.java):
 The Vehicle class DisplayNumberOfCreatedObjects ()

method:

public static void DisplayNumberOfCreatedObjects()

{

System.out.println("The number of created Vehicle objects so

far is " + numOfCreatedObjects + ".");

}

 The Bus class DisplayNumberOfCreatedObjects ()
method:

public static void DisplayNumberOfCreatedObjects()

{

System.out.println("The number of created Bus objects so far

is " + numOfCreatedObjects + ".");

}

8-7

Pitfall: No Late Binding for Static Methods

Example (See Polymorphism2.java) – Continues:

 In the previous example, the object v1 was

created from the Vehicle class, and the object

b1 was created from the Bus class,

 Given the following assignment:
v1 = b1;

 Now the two variables point to the same object

8-8

Pitfall: No Late Binding for Static Methods

Example (See Polymorphism2.java) – Continues:

 Given the invocations:
v1.DisplayNumberOfCreatedObjects();

b1.DisplayNumberOfCreatedObjects();

The output is:
The number of created Vehicle objects so far is 11.

The number of created Bus objects so far is 3.

 Note that here, DisplayNumberOfCreatedObjects is a
static method invoked a calling object (i.e. v1, b1) (instead of its class
name)

 Therefore the exact executed method is determined by its variable
name, not the object that it references

8-9

Pitfall: No Late Binding for Static Methods

 There are other cases where a static method has a
calling object in a more inconspicuous way

 For example, a static method can be invoked within the
definition of a nonstatic method, but without any
explicit class name or calling object

 In this case, the calling object is the implicit this

8-10

The final Modifier

 A method marked final indicates that it cannot be
overridden with a new definition in a derived class

 If final, the compiler can use early binding with the
method

public final void someMethod() { . . . }

 A class marked final indicates that it cannot be used
as a base class from which to derive any other classes

8-11

Upcasting and Downcasting

 Upcasting is when an object of a derived class is assigned to a

variable of a base class (or any ancestor class)

Vehicle v1 = new Vehicle(); //Base class object

Bus b1 = new Bus(2, 55000, 37); //Derived class object

v1 = b1;

 Downcasting is when a type cast is performed from a base class to a
derived class (or from any ancestor class to any descendent class)

 Downcasting has to be done very carefully

 In many cases it doesn't make sense, or is illegal:

B1 = v1; //will produce compiler error

B1 = (Bus)v1; //will produce run-time error

 There are times, however, when downcasting is necessary, e.g., inside the equals
method for a class

See Polymorphism3.java

Revisit Object3.java
8-12

http://www.aimanhanna.com/concordia/comp249/Polymorphism3.java.doc
http://www.aimanhanna.com/concordia/comp249/Object3.java.doc

Pitfall: Downcasting

 It is the responsibility of the programmer to use
downcasting only in situations where it makes
sense

 The compiler does not check to see if downcasting is
a reasonable thing to do

 Using downcasting in a situation that does not
make sense usually results in a run-time error

8-13

Tip: Checking to See if Downcasting is

Legitimate

 Downcasting to a specific type is only sensible if the
object being cast is an instance of that type

 This is exactly what the instanceof operator tests for:
object instanceof ClassName

 It will return true if object is of type ClassName; in
particular, it will return true if object is an instance of any
descendent class of ClassName

8-14

Pitfall: Limitations of Copy Constructors

 A copy constructor is supposed to create a good copy
of a new object from an existing one

 However, when polymorphism is used, a copy
constructor may have a strong limitation

See Polymorphism4.java

8-15

http://www.aimanhanna.com/concordia/comp249/Polymorphism4.java.doc

A First Look at the clone

Method
 Every object inherits a method named clone from

the Object class

 The method clone has no parameters

 It is supposed to return a deep copy of the calling object

 However, the inherited version of the method is not

designed to be used as is

 Instead, each class is expected to override it with a more

appropriate version

8-16

A First Look at the clone

Method
 The heading for the clone method defined in the Object

class is as follows:
protected Object clone()

 The heading for a clone method that overrides the clone
method in the Object class can differ somewhat from the
heading above
 A change to a more permissive access, such as from protected to public,

is always allowed when overriding a method definition

 Changing the return type from Object to the type of the class being
cloned is allowed because every class is a descendent class of the class
Object

 This is an example of a covariant return type

8-17

A First Look at the clone

Method
 If a class has a copy constructor, the clone method for

that class can use the copy constructor to create the copy
returned by the clone method

public Vehicle clone()

{

return new Sale(this);

}

and another example:

public Bus clone()

{

return new Bus(this);

}

See Polymorphism5.java

8-18

http://www.aimanhanna.com/concordia/comp249/Polymorphism5.java.doc

Pitfall: Limitations of Copy Constructors

 Although the clone() methods may in fact use the copy constructors to

perform the copying, this works because the method clone has the same

name in all classes, and polymorphism works with method names

 The copy constructors (i.e Vehicle, Bus, RaceCar) have different
names, and polymorphism doesn't work with methods of different names

8-19

Pitfall: Sometime the clone Method Return

Type is Object

 Prior to version 5.0, Java did not allow covariant return types, so no changes
whatsoever were allowed in the return type of an overridden method

 Therefore, the clone method for all classes had Object as its return type

 Consequently, the clone method for any class, i.e. the Vehicle class
would have looked like this:

public Object clone()

{

return new Vehicle(this);

}

 Therefore, the result needed to always be type casted when using a clone
method written for an older version of Java

Vehicle newVec = (Vehicle)originalVec.clone();

8-20

Pitfall: Sometime the clone Method Return

Type is Object

 It is still perfectly legal to use Object as the return type
for a clone method, even with classes defined after Java
version 5.0
 When in doubt, it causes no harm to include the type cast

 For example, the following is legal for the clone method of
the Vehicle class:
Vehicle newVec = originalVec.clone();

 However, adding the following type cast produces no
problems:
Vehicle newVec = (Vehicle)originalVec.clone();

8-21

Abstract Class

 Sometimes, it is does NOT make sense to create objects

from specific classes

 In such case, these classes should be created as abstract

 An abstract class can only be used to derive other classes;

you cannot create objects from an abstract class

 An abstract class must have at least one abstract method

8-22

Abstract Method

 An abstract method has a complete method heading, to
which has been added the modifier abstract

 It has no method body, and ends with a semicolon in
place of its body

public abstract long getSerNumber();

 An abstract method cannot be private

See Abstract1.java

8-23

http://www.aimanhanna.com/concordia/comp249/Abstract1.java.doc

Abstract Class

 An abstract class can have any number of abstract

and/or fully defined methods

 If a derived class of an abstract class adds to or does

not define all of the abstract methods, then it is

abstract also, and must add abstract to its

modifier

 A class that has no abstract methods is called a

concrete class

8-24

Pitfall: You Cannot Create Instances of an

Abstract Class

 An abstract class constructor cannot be used to create
an object of the abstract class
 However, a derived class constructor will include an

invocation of the abstract class constructor in the form of
super

 Although an object of an abstract class cannot be

created, it is perfectly fine to have a parameter of an

abstract class type

 This makes it possible to plug in an object of any of its

descendent classes

8-25

