
Comp 249

Programming Methodology

Chapter 7 – Inheritance- Part B

Prof. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007-2013 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Encapsulation and Inheritance Pitfall: Use of

Private Instance Variables from the Base Class

 An instance variable that is private in a base class is not
accessible by name in the definition of a method in any
other class, not even in a method definition of a derived
class

 Instead, a private instance variable of the base class can
only be accessed by the public accessor and mutator
methods defined in that class

7-2

Encapsulation and Inheritance Pitfall: Use of

Private Instance Variables from the Base Class

 If private instance variables of a class were
accessible in method definitions of a derived
class, then anytime someone wanted to access a
private instance variable, they would only need
to create a derived class, and access it in a
method of that class
 This would allow private instance variables to be

changed by mistake or in inappropriate ways (for
example, by not using the base type's accessor and
mutator methods only)

 See Inherit10.java

7-3

http://www.aimanhanna.com/concordia/comp249/Inherit10.java.doc

Pitfall: Private Methods Are Effectively Not

Inherited

 The private methods of the base class are like private
variables in terms of not being directly available

 However, a private method is completely unavailable,
unless invoked indirectly

 This is possible only if an object of a derived class invokes a
public method of the base class that happens to invoke the
private method

 This should not be a problem because private methods
should just be used as helping methods

 If a method is not just a helping method, then it should be
public, not private

7-4

Protected and Package

Access
 If a method or instance variable is modified by protected

(rather than public or private), then it can be accessed by
name
 Inside its own class definition

 Inside any class derived from it

 In the definition of any class in the same package

 The protected modifier provides very weak protection
compared to the private modifier

 It allows direct access to any programmer who defines a suitable derived
class

 Therefore, instance variables should normally not be marked
protected

See Inherit11.java
7-5

http://www.aimanhanna.com/concordia/comp249/Inherit11.java.doc

Protected and Package

Access
 An instance variable or method definition that is not preceded

with a modifier has package access

 Package access is also known as default or friendly access

 Instance variables or methods having package access can be
accessed by name inside the definition of any class in the same
package

 However, neither can be accessed outside the package

 Package access gives more control to the programmer defining

the classes

 Whoever controls the package directory (or folder) controls

the package access

7-6

Access Modifiers

7-7

Pitfall: Forgetting About the Default Package

 When considering package access, do not forget

the default package

 All classes in the current directory (not belonging to

some other package) belong to an unnamed package

called the default package

 If a class in the current directory is not in any

other package, then it is in the default package

 If an instance variable or method has package access, it

can be accessed by name in the definition of any other

class in the default package

7-8

Pitfall: A Restriction on Protected Access

 If a class B is derived from class A, and class A has a

protected instance variable n, but the classes A and B

are in different packages, then the following is true:

 A method in class B can access n by name (n is inherited

from class A)

 A method in class B can create a local object of itself, which

can access n by name (again, n is inherited from class A)

 See Vehicle.java & Inherit12.java

7-9

http://www.aimanhanna.com/concordia/comp249/Vehicle.java.doc
http://www.aimanhanna.com/concordia/comp249/Inherit12.java.doc

Pitfall: A Restriction on Protected Access

 However, if a method in class B creates an object of
class A, it can not access n by name
 A class knows about its own inherited variables and methods

 However, it cannot directly access any instance variable or
method of an ancestor class unless they are public

 Therefore, B can access n whenever it is used as an instance
variable of B, but B cannot access n when it is used as an
instance variable of A

7-10

Tip: Static Variables Are

Inherited

 Static variables in a base class are inherited by

any of its derived classes

 The modifiers public, private, and

protected, and package access have the

same meaning for static variables as they do for

instance variables

7-11

Access to a Redefined Base Method

 Within the definition of a method of a derived class, the base
class version of an overridden method of the base class can still
be invoked
 Simply preface the method name with super and a dot

public String toString()

{

return (super.toString() + "$" + wageRate);

}

 However, using an object of the derived class outside of its class
definition, there is no way to invoke the base class version of an
overridden method

7-12

You Cannot Use Multiple

supers
 It is only valid to use super to invoke a method from a direct

parent
 Repeating super to invoke a method from some other ancestor class is

illegal

 For example, if the Employee class were derived from the
class Person, and the HourlyEmployee class were derived
form the class Employee , it would not be possible to invoke
the toString method of the Person class within a method
of the HourlyEmployee class
super.super.toString() // ILLEGAL!

7-13

The Class Object

 In Java, every class is a descendent of the class

Object

 Every class has Object as its ancestor

 Every object of every class is of type Object, as well as

being of the type of its own class

 If a class is defined that is not explicitly a derived class

of another class, it is still automatically a derived class

of the class Object

7-14

The Class Object

 The class Object is in the package java.lang
which is always imported automatically

 Having an Object class enables methods to be
written with a parameter of type Object
 A parameter of type Object can be replaced by an object of

any class whatsoever

 For example, some library methods accept an argument of
type Object so they can be used with an argument that is
an object of any class

 See Object1.java

7-15

http://www.aimanhanna.com/concordia/comp249/Object1.java.doc

The Class Object

 The class Object has some methods that every Java class
inherits
 For example, the equals and toString methods

 Every object inherits these methods from some ancestor class, or
ultimately from Object

 However, these inherited methods should be overridden with
definitions more appropriate to a given class
 Some Java library classes assume that every class has its own version of

such methods

7-16

The Right Way to Define

equals

 Since the equals method is always inherited from the

class Object, methods like the following simply

overload it:
public boolean equals(Employee otherEmployee)

{ . . . }

 However, this method should be overridden, not just

overloaded:
public boolean equals(Object otherObject)

{ . . . }

See Object2.java
7-17

http://www.aimanhanna.com/concordia/comp249/Object2.java.doc

The Right Way to Define

equals

 The overridden version of equals must meet the
following conditions

 The parameter otherObject of type Object must be
type cast to the given class (e.g., Employee)

 However, the new method should only do this if
otherObject really is an object of that class, and if
otherObject is not equal to null

 Finally, it should compare each of the instance variables of
both objects

See Object3.java
7-18

http://www.aimanhanna.com/concordia/comp249/Object3.java.doc

A Better equals Method for the Class

Employee

public boolean equals(Object otherObject)

{

if(otherObject == null)

return false;

else if(getClass() != otherObject.getClass())

return false;

else

{

Employee otherEmployee = (Employee)otherObject;

return (name.equals(otherEmployee.name) &&

hireDate.equals(otherEmployee.hireDate));

}

}

7-19

Tip: getClass Versus instanceof

 Many authors suggest using the instanceof operator in the
definition of equals
 Instead of the getClass() method

 The instanceof operator will return true if the object
being tested is a member of the class for which it is being tested
 However, it will return true if it is a descendent of that class as well

 It is possible (and especially disturbing), for the equals
method to behave inconsistently given this scenario

See Object4.java

7-20

http://www.aimanhanna.com/concordia/comp249/Object4.java.doc

Tip: getClass Versus instanceof

 Here is an example using the class Employee
. . . //excerpt from bad equals method

else if(!(OtherObject instanceof Employee))

return false; . . .

 Now consider the following:
Employee e = new Employee("Joe", new Date());

HourlyEmployee h = new

HourlyEmployee("Joe", new Date(),8.5, 40);

boolean testH = e.equals(h);

boolean testE = h.equals(e);

7-21

Tip: getClass Versus instanceof

 testH will be true, because h is an Employee
with the same name and hire date as e

 However, testE will be false, because e is not an
HourlyEmployee, and cannot be compared to h

 Note that this problem would not occur if the
getClass() method were used instead, as in the
previous equals method example

7-22

instanceof and getClass

 Both the instanceof operator and the
getClass() method can be used to check the class
of an object

 However, the getClass() method is more exact

 The instanceof operator simply tests the class of an
object

 The getClass() method used in a test with == or !=
tests if two objects were created with the same class

7-23

The instanceof Operator

 The instanceof operator checks if an object
is of the type given as its second argument

Object instanceof ClassName

 This will return true if Object is of type
ClassName, and otherwise return false

 Note that this means it will return true if Object
is the type of any descendent class of ClassName

7-24

The getClass() Method

 Every object inherits the same getClass() method
from the Object class
 This method is marked final, so it cannot be overridden

 An invocation of getClass() on an object returns a
representation only of the class that was used with new
to create the object
 The results of any two such invocations can be compared

with == or != to determine whether or not they represent
the exact same class

(object1.getClass() == object2.getClass())

7-25

Tip: "Is a" Versus "Has a"

 A derived class demonstrates an "is a" relationship

between it and its base class

 Forming an "is a" relationship is one way to make a more

complex class out of a simpler class

 For example, an HourlyEmployee "is an" Employee

 HourlyEmployee is a more complex class compared to

the more general Employee class

7-26

Composition

 Another way to make a more complex class out of a

simpler class is through a "has a" relationship

 This type of relationship, called composition, occurs when a

class contains an instance variable of a class type

 For instance, a Car class may contain instance

variables such as tires, and seats, which are

objects form the of the class Tire, and so therefore,

an Seat classes

 See Composition1.java

7-27

http://www.aimanhanna.com/concordia/comp249/Composition1.java.doc

