
Comp 249

Programming Methodology

Chapter 7 – Inheritance- Part B

Prof. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java 3rd Edition by

Savitch; which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is

published by Pearson Education / Addison-Wesley.

Copyright © 2007-2013 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Encapsulation and Inheritance Pitfall: Use of

Private Instance Variables from the Base Class

 An instance variable that is private in a base class is not
accessible by name in the definition of a method in any
other class, not even in a method definition of a derived
class

 Instead, a private instance variable of the base class can
only be accessed by the public accessor and mutator
methods defined in that class

7-2

Encapsulation and Inheritance Pitfall: Use of

Private Instance Variables from the Base Class

 If private instance variables of a class were
accessible in method definitions of a derived
class, then anytime someone wanted to access a
private instance variable, they would only need
to create a derived class, and access it in a
method of that class
 This would allow private instance variables to be

changed by mistake or in inappropriate ways (for
example, by not using the base type's accessor and
mutator methods only)

 See Inherit10.java

7-3

http://www.aimanhanna.com/concordia/comp249/Inherit10.java.doc

Pitfall: Private Methods Are Effectively Not

Inherited

 The private methods of the base class are like private
variables in terms of not being directly available

 However, a private method is completely unavailable,
unless invoked indirectly

 This is possible only if an object of a derived class invokes a
public method of the base class that happens to invoke the
private method

 This should not be a problem because private methods
should just be used as helping methods

 If a method is not just a helping method, then it should be
public, not private

7-4

Protected and Package

Access
 If a method or instance variable is modified by protected

(rather than public or private), then it can be accessed by
name
 Inside its own class definition

 Inside any class derived from it

 In the definition of any class in the same package

 The protected modifier provides very weak protection
compared to the private modifier

 It allows direct access to any programmer who defines a suitable derived
class

 Therefore, instance variables should normally not be marked
protected

See Inherit11.java
7-5

http://www.aimanhanna.com/concordia/comp249/Inherit11.java.doc

Protected and Package

Access
 An instance variable or method definition that is not preceded

with a modifier has package access

 Package access is also known as default or friendly access

 Instance variables or methods having package access can be
accessed by name inside the definition of any class in the same
package

 However, neither can be accessed outside the package

 Package access gives more control to the programmer defining

the classes

 Whoever controls the package directory (or folder) controls

the package access

7-6

Access Modifiers

7-7

Pitfall: Forgetting About the Default Package

 When considering package access, do not forget

the default package

 All classes in the current directory (not belonging to

some other package) belong to an unnamed package

called the default package

 If a class in the current directory is not in any

other package, then it is in the default package

 If an instance variable or method has package access, it

can be accessed by name in the definition of any other

class in the default package

7-8

Pitfall: A Restriction on Protected Access

 If a class B is derived from class A, and class A has a

protected instance variable n, but the classes A and B

are in different packages, then the following is true:

 A method in class B can access n by name (n is inherited

from class A)

 A method in class B can create a local object of itself, which

can access n by name (again, n is inherited from class A)

 See Vehicle.java & Inherit12.java

7-9

http://www.aimanhanna.com/concordia/comp249/Vehicle.java.doc
http://www.aimanhanna.com/concordia/comp249/Inherit12.java.doc

Pitfall: A Restriction on Protected Access

 However, if a method in class B creates an object of
class A, it can not access n by name
 A class knows about its own inherited variables and methods

 However, it cannot directly access any instance variable or
method of an ancestor class unless they are public

 Therefore, B can access n whenever it is used as an instance
variable of B, but B cannot access n when it is used as an
instance variable of A

7-10

Tip: Static Variables Are

Inherited

 Static variables in a base class are inherited by

any of its derived classes

 The modifiers public, private, and

protected, and package access have the

same meaning for static variables as they do for

instance variables

7-11

Access to a Redefined Base Method

 Within the definition of a method of a derived class, the base
class version of an overridden method of the base class can still
be invoked
 Simply preface the method name with super and a dot

public String toString()

{

return (super.toString() + "$" + wageRate);

}

 However, using an object of the derived class outside of its class
definition, there is no way to invoke the base class version of an
overridden method

7-12

You Cannot Use Multiple

supers
 It is only valid to use super to invoke a method from a direct

parent
 Repeating super to invoke a method from some other ancestor class is

illegal

 For example, if the Employee class were derived from the
class Person, and the HourlyEmployee class were derived
form the class Employee , it would not be possible to invoke
the toString method of the Person class within a method
of the HourlyEmployee class
super.super.toString() // ILLEGAL!

7-13

The Class Object

 In Java, every class is a descendent of the class

Object

 Every class has Object as its ancestor

 Every object of every class is of type Object, as well as

being of the type of its own class

 If a class is defined that is not explicitly a derived class

of another class, it is still automatically a derived class

of the class Object

7-14

The Class Object

 The class Object is in the package java.lang
which is always imported automatically

 Having an Object class enables methods to be
written with a parameter of type Object
 A parameter of type Object can be replaced by an object of

any class whatsoever

 For example, some library methods accept an argument of
type Object so they can be used with an argument that is
an object of any class

 See Object1.java

7-15

http://www.aimanhanna.com/concordia/comp249/Object1.java.doc

The Class Object

 The class Object has some methods that every Java class
inherits
 For example, the equals and toString methods

 Every object inherits these methods from some ancestor class, or
ultimately from Object

 However, these inherited methods should be overridden with
definitions more appropriate to a given class
 Some Java library classes assume that every class has its own version of

such methods

7-16

The Right Way to Define

equals

 Since the equals method is always inherited from the

class Object, methods like the following simply

overload it:
public boolean equals(Employee otherEmployee)

{ . . . }

 However, this method should be overridden, not just

overloaded:
public boolean equals(Object otherObject)

{ . . . }

See Object2.java
7-17

http://www.aimanhanna.com/concordia/comp249/Object2.java.doc

The Right Way to Define

equals

 The overridden version of equals must meet the
following conditions

 The parameter otherObject of type Object must be
type cast to the given class (e.g., Employee)

 However, the new method should only do this if
otherObject really is an object of that class, and if
otherObject is not equal to null

 Finally, it should compare each of the instance variables of
both objects

See Object3.java
7-18

http://www.aimanhanna.com/concordia/comp249/Object3.java.doc

A Better equals Method for the Class

Employee

public boolean equals(Object otherObject)

{

if(otherObject == null)

return false;

else if(getClass() != otherObject.getClass())

return false;

else

{

Employee otherEmployee = (Employee)otherObject;

return (name.equals(otherEmployee.name) &&

hireDate.equals(otherEmployee.hireDate));

}

}

7-19

Tip: getClass Versus instanceof

 Many authors suggest using the instanceof operator in the
definition of equals
 Instead of the getClass() method

 The instanceof operator will return true if the object
being tested is a member of the class for which it is being tested
 However, it will return true if it is a descendent of that class as well

 It is possible (and especially disturbing), for the equals
method to behave inconsistently given this scenario

See Object4.java

7-20

http://www.aimanhanna.com/concordia/comp249/Object4.java.doc

Tip: getClass Versus instanceof

 Here is an example using the class Employee
. . . //excerpt from bad equals method

else if(!(OtherObject instanceof Employee))

return false; . . .

 Now consider the following:
Employee e = new Employee("Joe", new Date());

HourlyEmployee h = new

HourlyEmployee("Joe", new Date(),8.5, 40);

boolean testH = e.equals(h);

boolean testE = h.equals(e);

7-21

Tip: getClass Versus instanceof

 testH will be true, because h is an Employee
with the same name and hire date as e

 However, testE will be false, because e is not an
HourlyEmployee, and cannot be compared to h

 Note that this problem would not occur if the
getClass() method were used instead, as in the
previous equals method example

7-22

instanceof and getClass

 Both the instanceof operator and the
getClass() method can be used to check the class
of an object

 However, the getClass() method is more exact

 The instanceof operator simply tests the class of an
object

 The getClass() method used in a test with == or !=
tests if two objects were created with the same class

7-23

The instanceof Operator

 The instanceof operator checks if an object
is of the type given as its second argument

Object instanceof ClassName

 This will return true if Object is of type
ClassName, and otherwise return false

 Note that this means it will return true if Object
is the type of any descendent class of ClassName

7-24

The getClass() Method

 Every object inherits the same getClass() method
from the Object class
 This method is marked final, so it cannot be overridden

 An invocation of getClass() on an object returns a
representation only of the class that was used with new
to create the object
 The results of any two such invocations can be compared

with == or != to determine whether or not they represent
the exact same class

(object1.getClass() == object2.getClass())

7-25

Tip: "Is a" Versus "Has a"

 A derived class demonstrates an "is a" relationship

between it and its base class

 Forming an "is a" relationship is one way to make a more

complex class out of a simpler class

 For example, an HourlyEmployee "is an" Employee

 HourlyEmployee is a more complex class compared to

the more general Employee class

7-26

Composition

 Another way to make a more complex class out of a

simpler class is through a "has a" relationship

 This type of relationship, called composition, occurs when a

class contains an instance variable of a class type

 For instance, a Car class may contain instance

variables such as tires, and seats, which are

objects form the of the class Tire, and so therefore,

an Seat classes

 See Composition1.java

7-27

http://www.aimanhanna.com/concordia/comp249/Composition1.java.doc

