
Comp 249

Programming Methodology

Chapter 7 - Inheritance – Part A

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java by Savitch; which has

originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by Pearson

Education / Addison-Wesley.

Copyright © 2007-2017 Pearson Addison-Wesley

Copyright © 2024 Aiman Hanna

All rights reserved

Introduction to Inheritance

 Inheritance is one of the main techniques of object-
oriented programming (OOP)

 Using this technique, further classes can be created
from existing ones; those classes are said to inherit the
methods and instance variables of the class they
inherited
 The new class is called a derived class

 The original class is called the base class

 Advantage: Reusing existing code

7-2

Derived Classes

 When designing certain classes, there is often a natural

hierarchy for grouping them

 For instance, for the employees of a company, there are

hourly employees and salaried employees

 Hourly employees can be divided into full time and part time

workers

 Salaried employees can be divided into those on technical

staff, and those on the executive staff

7-3

A Class Hierarchy

7-4

Derived Classes

 Since an hourly employee is an employee, it is defined
as a derived class of the class Employee

 A derived class is defined by adding instance variables and
methods to an existing class

 The existing class that the derived class is built upon is called
the base class

 The phrase extends BaseClass must be added to the
derived class definition:
public class HourlyEmployee extends Employee

 See Inherit1.java

7-5

http://www.aimanhanna.com/concordia/comp249/Inherit1.java.doc

Derived Classes

 Derived classes (also referred to as subclasses) inherit all
instance variables and methods of the base class (also
referred to as superclass).

 Any object of a derived class can invoke one of these parent
methods, just like any of its own methods

 The derived class can add more instance variables, static
variables, and/or methods

 See Inherit2.java

7-6

http://www.aimanhanna.com/concordia/comp249/Inherit2.java.doc

Parent and Child Classes

 A base class is often called the parent class

 A derived class is then called a child class

 These relationships are often extended such that a class

that is a parent of a parent . . . of another class is called

an ancestor class

 If class A is an ancestor of class B, then class B can be called

a descendent of class A

7-7

Overriding a Method Definition

 Although a derived class inherits methods from
the base class, it can change or override an
inherited method if necessary

 In order to override a method definition, a new
definition of the method is simply placed in the class
definition, just like any other method that is added to
the derived class

 See Inherit3.java

7-8

http://www.aimanhanna.com/concordia/comp249/Inherit3.java.doc

Changing the Return Type

of an Overridden Method

 Ordinarily, the type returned may not be changed when

overriding a method

 However, if it is a class type, then the returned type

may be changed to that of any descendent class of the

returned type

 This is known as a covariant return type

 Covariant return types are new in Java 5.0; they are not allowed

in earlier versions of Java

7-9

Covariant Return Type

 Given the following base class:
public class BaseClass

{ . . .

public Employee getSomeone(int someKey)

. . .

 The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass

{ . . .

public HourlyEmployee getSomeone(int

someKey)

. . .

7-10

Changing the Access Permission of an

Overridden Method

 The access permission of an overridden method

can be changed from private in the base class to

public (or some other more permissive access)

in the derived class

 However, the access permission of an

overridden method can not be changed from

public in the base class to a more restricted

access permission in the derived class

7-11

Changing the Access Permission of an

Overridden Method

 Given the following method header in a base case:

private void doSomething()

 The following method header is valid in a derived class:

public void doSomething()

 However, the opposite is not valid

 Given the following method header in a base case:

public void doSomething()

 The following method header is not valid in a derived
class:

private void doSomething()

7-12

Pitfall: Overriding Versus Overloading

 Do not confuse overriding with overloading

 When a method is overridden, the new method

definition given in the derived class has the exact same

number and types of parameters as in the base class

 When a method in a derived class has a different

signature from the method in the base class, that is

overloading

 Note that when the derived class overloads the original

method, it still inherits the original method from the

base class as well

7-13

The final Modifier

 If the modifier final is placed before the
definition of a method, then that method may not
be overridden in a derived class

 It the modifier final is placed before the
definition of a class, then that class may not be
used as a base class to derive other classes

 See Inherit4.java

7-14

http://www.aimanhanna.com/concordia/comp249/Inherit4.java.doc

The super Constructor

 A derived class uses a constructor from the base class to initialize all
the data inherited from the base class

 In order to invoke a constructor from the base class, it uses a
special syntax:

public derivedClass(int p1, int p2, double
p3)

{

super(p1, p2);

instanceVariable = p3;

}

 In the above example, super(p1, p2); is a call to the base
class constructor

 See Inherit5.java

7-15

http://www.aimanhanna.com/concordia/comp249/Inherit5.java.doc

The super Constructor

 A call to the base class constructor can never use the name of

the base class, but uses the keyword super instead

 A call to super must always be the first action taken in a

constructor definition

 Notice that if super is not used, then a call to the default

constructor of the base class is automatically issued

 Consequently, a compilation error would occur if the base class

has no default constructor

 See Inherit6.java

 See Inherit7.java

7-16

http://www.aimanhanna.com/concordia/comp249/Inherit6.java.doc
http://www.aimanhanna.com/concordia/comp249/Inherit7.java.doc

The this Constructor

 Within the definition of a constructor for a class, this
can be used as a name for invoking another constructor
of the same class

 The same restrictions on how to use a call to super apply to
the this constructor

 If it is necessary to include a call to both super and
this, the call using this must be made first, and
then the constructor that is called must call super as
its first action

 See Inherit8.java

7-17

http://www.aimanhanna.com/concordia/comp249/Inherit8.java.doc

The this Constructor

 Often, a no-argument constructor uses this to invoke an
explicit-value constructor
 No-argument constructor (invokes explicit-value constructor using this

and default arguments):
public ClassName()

{

this(argument1, argument2);

}

 Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)

{

. . .

}

7-18

The this Constructor

Example:

public HourlyEmployee()

{

this("No name", new Date(), 0, 0);

}

 The above constructor will cause the constructor with
the following heading to be invoked:

public HourlyEmployee(String theName,

Date theDate, double theWageRate, double

theHours)

7-19

Tip: An Object of a Derived Class Has More

than One Type

 An object of a derived class has the type of the derived class, and it also has

the type of the base class

 More generally, an object of a derived class has the type of every one of its

ancestor classes

 Therefore, an object of a derived class can be assigned to a variable of any

ancestor type

 An object of a derived class can be plugged in as a parameter in place of any
of its ancestor classes

 In fact, a derived class object can be used anyplace that an object of any of its
ancestor types can be used

 Note, however, that this relationship does not go the other way

 An ancestor type can never be used in place of one of its derived types

 See Inherit9.java

7-20

http://www.aimanhanna.com/concordia/comp249/Inherit9.java.doc

Pitfall: The Terms "Subclass" and

"Superclass"

 The terms subclass and superclass are sometimes

mistakenly reversed

 A superclass or base class is more general and inclusive, but

less complex

 A subclass or derived class is more specialized, less inclusive,

and more complex

 As more instance variables and methods are added, the number of

objects that can satisfy the class definition becomes more restricted

7-21

