
Comp 249

Programming Methodology

Chapter 7 - Inheritance – Part A

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of Absolute Java by Savitch; which has

originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by Pearson

Education / Addison-Wesley.

Copyright © 2007-2017 Pearson Addison-Wesley

Copyright © 2023 Aiman Hanna

All rights reserved

Introduction to Inheritance

 Inheritance is one of the main techniques of object-
oriented programming (OOP)

 Using this technique, further classes can be created
from existing ones; those classes are said to inherit the
methods and instance variables of the class they
inherited
 The new class is called a derived class

 The original class is called the base class

 Advantage: Reusing existing code

7-2

Derived Classes

 When designing certain classes, there is often a natural

hierarchy for grouping them

 For instance, for the employees of a company, there are

hourly employees and salaried employees

 Hourly employees can be divided into full time and part time

workers

 Salaried employees can be divided into those on technical

staff, and those on the executive staff

7-3

A Class Hierarchy

7-4

Derived Classes

 Since an hourly employee is an employee, it is defined
as a derived class of the class Employee

 A derived class is defined by adding instance variables and
methods to an existing class

 The existing class that the derived class is built upon is called
the base class

 The phrase extends BaseClass must be added to the
derived class definition:
public class HourlyEmployee extends Employee

 See Inherit1.java

7-5

http://www.aimanhanna.com/concordia/comp249/Inherit1.java.doc

Derived Classes

 Derived classes (also referred to as subclasses) inherit all
instance variables and methods of the base class (also
referred to as superclass).

 Any object of a derived class can invoke one of these parent
methods, just like any of its own methods

 The derived class can add more instance variables, static
variables, and/or methods

 See Inherit2.java

7-6

http://www.aimanhanna.com/concordia/comp249/Inherit2.java.doc

Parent and Child Classes

 A base class is often called the parent class

 A derived class is then called a child class

 These relationships are often extended such that a class

that is a parent of a parent . . . of another class is called

an ancestor class

 If class A is an ancestor of class B, then class B can be called

a descendent of class A

7-7

Overriding a Method Definition

 Although a derived class inherits methods from
the base class, it can change or override an
inherited method if necessary

 In order to override a method definition, a new
definition of the method is simply placed in the class
definition, just like any other method that is added to
the derived class

 See Inherit3.java

7-8

http://www.aimanhanna.com/concordia/comp249/Inherit3.java.doc

Changing the Return Type

of an Overridden Method

 Ordinarily, the type returned may not be changed when

overriding a method

 However, if it is a class type, then the returned type

may be changed to that of any descendent class of the

returned type

 This is known as a covariant return type

 Covariant return types are new in Java 5.0; they are not allowed

in earlier versions of Java

7-9

Covariant Return Type

 Given the following base class:
public class BaseClass

{ . . .

public Employee getSomeone(int someKey)

. . .

 The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass

{ . . .

public HourlyEmployee getSomeone(int

someKey)

. . .

7-10

Changing the Access Permission of an

Overridden Method

 The access permission of an overridden method

can be changed from private in the base class to

public (or some other more permissive access)

in the derived class

 However, the access permission of an

overridden method can not be changed from

public in the base class to a more restricted

access permission in the derived class

7-11

Changing the Access Permission of an

Overridden Method

 Given the following method header in a base case:

private void doSomething()

 The following method header is valid in a derived class:

public void doSomething()

 However, the opposite is not valid

 Given the following method header in a base case:

public void doSomething()

 The following method header is not valid in a derived
class:

private void doSomething()

7-12

Pitfall: Overriding Versus Overloading

 Do not confuse overriding with overloading

 When a method is overridden, the new method

definition given in the derived class has the exact same

number and types of parameters as in the base class

 When a method in a derived class has a different

signature from the method in the base class, that is

overloading

 Note that when the derived class overloads the original

method, it still inherits the original method from the

base class as well

7-13

The final Modifier

 If the modifier final is placed before the
definition of a method, then that method may not
be overridden in a derived class

 It the modifier final is placed before the
definition of a class, then that class may not be
used as a base class to derive other classes

 See Inherit4.java

7-14

http://www.aimanhanna.com/concordia/comp249/Inherit4.java.doc

The super Constructor

 A derived class uses a constructor from the base class to initialize all
the data inherited from the base class

 In order to invoke a constructor from the base class, it uses a
special syntax:

public derivedClass(int p1, int p2, double
p3)

{

super(p1, p2);

instanceVariable = p3;

}

 In the above example, super(p1, p2); is a call to the base
class constructor

 See Inherit5.java

7-15

http://www.aimanhanna.com/concordia/comp249/Inherit5.java.doc

The super Constructor

 A call to the base class constructor can never use the name of

the base class, but uses the keyword super instead

 A call to super must always be the first action taken in a

constructor definition

 Notice that if super is not used, then a call to the default

constructor of the base class is automatically issued

 Consequently, a compilation error would occur if the base class

has no default constructor

 See Inherit6.java

 See Inherit7.java

7-16

http://www.aimanhanna.com/concordia/comp249/Inherit6.java.doc
http://www.aimanhanna.com/concordia/comp249/Inherit7.java.doc

The this Constructor

 Within the definition of a constructor for a class, this
can be used as a name for invoking another constructor
of the same class

 The same restrictions on how to use a call to super apply to
the this constructor

 If it is necessary to include a call to both super and
this, the call using this must be made first, and
then the constructor that is called must call super as
its first action

 See Inherit8.java

7-17

http://www.aimanhanna.com/concordia/comp249/Inherit8.java.doc

The this Constructor

 Often, a no-argument constructor uses this to invoke an
explicit-value constructor
 No-argument constructor (invokes explicit-value constructor using this

and default arguments):
public ClassName()

{

this(argument1, argument2);

}

 Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)

{

. . .

}

7-18

The this Constructor

Example:

public HourlyEmployee()

{

this("No name", new Date(), 0, 0);

}

 The above constructor will cause the constructor with
the following heading to be invoked:

public HourlyEmployee(String theName,

Date theDate, double theWageRate, double

theHours)

7-19

Tip: An Object of a Derived Class Has More

than One Type

 An object of a derived class has the type of the derived class, and it also has

the type of the base class

 More generally, an object of a derived class has the type of every one of its

ancestor classes

 Therefore, an object of a derived class can be assigned to a variable of any

ancestor type

 An object of a derived class can be plugged in as a parameter in place of any
of its ancestor classes

 In fact, a derived class object can be used anyplace that an object of any of its
ancestor types can be used

 Note, however, that this relationship does not go the other way

 An ancestor type can never be used in place of one of its derived types

 See Inherit9.java

7-20

http://www.aimanhanna.com/concordia/comp249/Inherit9.java.doc

Pitfall: The Terms "Subclass" and

"Superclass"

 The terms subclass and superclass are sometimes

mistakenly reversed

 A superclass or base class is more general and inclusive, but

less complex

 A subclass or derived class is more specialized, less inclusive,

and more complex

 As more instance variables and methods are added, the number of

objects that can satisfy the class definition becomes more restricted

7-21

