
Comp 248 – Winter 2016

Assignment # 5 – Page 1

Concordia University

Comp 248 - Winter 2016

Introduction to Programming

Assignment # 5

Due by 11:59 PM, April 8, 2016

This assignment is partially built over assignment # 4. In specific, you may utilize parts

of the CellPhone class that you have created in assignment 4, with possibly some

modifications. To minimize any reference to the old assignment, the full details of the

CellPhone class is indicated below, so there is no need to refer to the description given in

Assignment 4.

A CellPhone object has three attributes, a brand (String), a serial number (long), and a

price (double).

Part 1:
You are required to design and implement the CellPhone class according to the

following specifications:

- Upon the creation of a CellPhone object, the object must immediately be

initialized with valid values; that is: brand, serial number and price. You may

assume that serial numbers do NOT start with 0 (that is, they can only start with

digits from 1 to 9).

- Your class should have a copy constructor, so new CellPhone objects can be

created as exact copies of existing ones (for simplicity, we assume here that serial

numbers can be duplicated).

- The design should allow enough flexibility so that the value of any of these

attributes can be modified later on. For example, it should be possible to create a

CellPhone object with a given price then change its price later on.

- The design should allow the user of the class to obtain the value of any of the

attributes individually (i.e. getPrice()).

- The design should also allow the user to view all CellPhone information at once

using the System.out.print() method. That is, a statement such as:

System.out.println(c1); would display all information of CellPhone c1.

Hint: Use toString() method.

Comp 248 – Winter 2016

Assignment # 5 – Page 2

Part 2:
In this part, you are required to write a public class called CellPhoneSearch, which will

utilize the CellPhone class created in part 1. In the main method of this class the

following must be done:

- Create an array of 10 cell phones. All these cell phones must be initialized with

proper values; that is: brand, price & serial number. You must use the copy

constructor to create some of these objects.

- Ask the user to enter three pieces of information: a cell phone brand, a cell phone

price, and either Yes or No for a search combination (see details below).

- Read the entered information.

- Depending on whether the user has entered Yes or No for matching combinations,

your program will search the array for matching cell phones based on the

following rules:

 If the user enters Yes for matching combinations, then your program will

search the array and displays all cell phones that have both the brand and the price

entered by the user.

 If the user enters No (or anything different than Yes, or any of its variations i.e.

YES) for matching combinations, then your program will search the array and

display all cell phones that have either the brand entered by the user or the price

entered by the user.

If no matches are found, the program must indicate that to the user.

As a general rule, if the display is only for the prices, then it must be

 formatted using printf.

Guideline: For part 1 and 2, you will need to create one .java file, called

CellPhoneSearch.java, which includes the CellPhone class as well as the

CellPhoneSearch class (this is the public class), which will have the main() function.

Part 3:
For this part, you are required to write a class called ModifyCellPhones, which is going

to utilize the CellPhone class that you have created in part 1 (notice that Part 3 has

nothing to do with Part 2). In that part, you are required to write a public class, the

ModifyCellPhones class. Besides the main() method, this class will also include another

static method called ModifyPhonePrices(). The details of this method are as follows:

- The method accepts 3 parameters: a 2-dimentional array of cell phones, and two

double values. The method also returns an integer.

Comp 248 – Winter 2016

Assignment # 5 – Page 3

- The method will search the entire array looking for any cell phone with a price

 that matches the 2
nd

 parameter, and if found, the method will replace the price of

 that cell phone with the value passed as the 3
rd

 parameter.

- The method should display the array location of each cell phone that has been

 changed.

- The method should also keep track of how many changes were made in total, and

 finally return this number.

In the main() method of this class the following must be done:

- Create a 2-dimentional array of 10x10 cell phones; all cell phones in the arrays

must be initialized with proper values; that is brand, price and serial number.

Many of these phones may have identical values (you may initialize them in a for

loop, and you do not need to worry about phones with duplicate serial numbers);

however, at least 6 of these 100 cell phones must also be created using the copy

constructor. The locations of these 6 phones in the array are up to you.

- Once the objects are created and placed in the array, change the price of all the

objects. The price of any phone must now be set to a value between 100$ and

299$ inclusive. To simplify your task, we assume that all prices will be set to

values that do not have any fractions (i.e. 214.00, 196.00, 284.00, etc.). You must

use the Random class to set the prices. You can simply use a for loop and set the

prices using a Random object.

- Display the contents of the array; however you only need to display the prices of

the phones (not the rest of the attributes). This should look like the following:

Figure 1 – Displaying original contents of the arrary –

Only prices of cell phones should be displayed

- Call the ModifyPhonePrices() method, which you created above, and pass to it

the 2-dimenstional array, as well as 2 values. The passed values are up to you.

- Give an output message indicating how many changes are made.

Comp 248 – Winter 2016

Assignment # 5 – Page 4

- Display the array again (again, you are only displaying the prices), which will

now show the modified array.

Here is an example that illustrates the requirements. Assume arr is the name of the 2-

dimentional array that you created, and assume that its contents were as shown in

Figure 1 above. Calling ModifyPhonePrices(arr, 214, 196) will result in the

following displays by the method. Again, for simplicity, assume that all the passed

values will not include any fractions; so calls similar to the one just indicated are

okay (and actually, this is what you should use). Further; assume that the new given

values will still be between 100$ and 299$ inclusive:

Figure 2 – Displaying locations where prices of cell phones have been modified

- Finally displaying the content of the array will consequently show the following

(here is actually the full image of how the program should behave; the circled

values are just for clarity to show where the changes were made):

Figure 3 – Illustrative example of program behavior

Comp 248 – Winter 2016

Assignment # 5 – Page 5

Guideline: For part 3, you will need to create one .java file, called

ModifyCellPhones.java. The file will have an exact copy of the CellPhone class defined

in Part 1, as well as the public class ModifyCellPhones. Inside that public class, you will

have two static methods, the ModifyPhonePrices() method as well as the main() method.

 As a general rule, displaying of the prices must be formatted using printf.

Submitting Assignment 5
- IMPORTANT: You are allowed to work on a team of 2 students at most (including

yourself!). Any teams of 3 or more students will result in 0 marks for all team members.

If your work on a team, ONLY one copy of the assignment is to be submitted for both

members.

- Zip together the source codes. (Please use WINZIP).

- Naming convention for zip file: Create one zip file, containing all source files for your

assignment using the following naming convention:

The zip file should be called a#_studentID, where # is the number of the

assignment studentID is your student ID(s) number. For example, for the first

assignment, student 12345678 would submit a zip file named a1_12345678.zip.

If you work on a team and your IDs are 12345678 and 34567890, you would

submit a zip file named a1_12345678_34567890.zip.

- Submit your zip file at: https://fis.encs.concordia.ca/eas/ as Programming

Assignment and submission #5. Assignments submitted to the wrong directory

would be discarded and no replacement submission will be allowed.

- Submit only ONE version of an assignment. If more than one version is submitted the

first one will be graded and all others will be disregarded.

Evaluation Criteria for Assignment 5 (10 points)

Comments - description of variables/ description

of the steps in code/ purpose of program/

Indentation and readability of program/

Choice of variable names

1 pts

Clarity of output 0.5 pt

Part 1 1.5 pts

Part 2 (Achieving Requirements/Functionality) 3 pts

Part 3 (Achieving Requirements/Functionality) 4 pts

https://fis.encs.concordia.ca/eas/

