Comp 243
Introduction to Programming
Chapter 2 - Console Input & Output

Dr. Aiman Hanna
Department of Computer Science & Software Engineering
Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3™ Edition by Savitch;
which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by
Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley
Copyright © 2008-2016 Aiman Hanna
‘ All rights reserved

UNIVERSITE PEARSON

VConcordla Tl
Wesley

UNIVERSITY

ABSOLUTE
JAVA

System.out.println for console output

= BEvery invocation of println ends a line of
output

System.out.println ("The account has
a balance of " + balance) ;

2-2

println Versus print

m Another method that can be invoked by the
System.out objectis print

m The print method is like println, except
that it does not end a line

m OutputlFormatting]l.java s-Word file)

http://aimanhanna.com/concordia/comp248/OutputFormatting1.java
http://aimanhanna.com/concordia/comp248/MathOperations2.java
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc

Formatting Output with printf

m Starting with version 5.0, Java includes a method named
printf that can be used to produce output in a
specific format

m System.out.printf can have any number of
arguments

m The first argument is always a formzat string that
contains one or motre format specifiers tor the
remaining arguments

m OutputlFormatting2.java (Ms-Word file)

2-4

http://aimanhanna.com/concordia/comp248/OutputFormatting2.java
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc

printf Format Specifier

®m The code
double price = 19.8;

System.out.printf ("Price is:
$10.2f", price),;

System.out.println(" each") ;

will output the line
Price 1is: 19.80 each

2-5

Right and Left Justification in printf

m Specifier such as $8 .2 will rghr-justifythe
output

mf

left-justification 1s needed, then a “~="" sign

is placed after the $ of the specifier.

System.out.printf ("Price 1is:
$-10.2f", price) ;

L] Out:

putbFormatting3.java (s-Word file)

2-6

http://aimanhanna.com/concordia/comp248/OutputFormatting3.java
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc

Multiple arguments with printf

m |t 1s also possible to format different
types with printf

B 3n 1s used for new line

B 3% 1s used to escape a specitier

m OutputlFormatting4.java (Ms-Word file)

2-7

http://aimanhanna.com/concordia/comp248/OutputFormatting4.java
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc

Format Specifiers for System.out.printt

Format Specifiers for System.out.printf

Decimal (ordinary) integer

Fixed-point (everyday notation) floating point

E-notation floating point

General floating point (Java decides whether to use
E-notation or not)

String

Character

Importing Packages and Classes

m Libraries in Java are called packages

m A package 1s a collection of classes that 1s stored 1n a manner that
makes it easily accessible to any program

m In order to use a class that belongs to a package, the class must be
brought into a program using an zport statement

= (Classes found in the package java.lang are imported
automatically into every Java program

import java.text.NumberFormat;
// import the NumberFormat class only
import java.text.*;

//import all the classes in package
Jjava. text

2-9

Console Input Using the Scanner Class

m Starting with version 5.0, Java includes a class for doing simple
keyboard input named the Scanner class

m [n order to use the Scanner class, a program must include the
following line near the start of the file:
import java.util.Scanner

m [nputScanner].java os-wWord file)

m [nputScanner?.java (s-Word file)

2-10

http://aimanhanna.com/concordia/comp248/InputScanner2.java
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc

Console Input Using the Scanner Class

®m The method next reads one string of non-
whitespace characters delimited by

whitespace

B The method nextLine reads an entire line
of keyboard input

m [nputScanner3.java (s-Word file)

2-11

http://aimanhanna.com/concordia/comp248/InputScanner3.java
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc

Pitfall: Dealing with the Line Terminator,
v \n '

m The method nextLine of the class Scanner reads the remainder
of a line of text starting wherever the last keyboard reading left off

m This can cause problems when combining it with different methods
for reading from the keyboard such as nextInt, or next

m Given the code,
Scanner keyboard = new Scanner (System.in) ;
int n = keyboard.nextInt() ;
String sl = keyboard.nextLine () ;
String s2 = keyboard.nextLine() ;
and the input,
2
Heads are better than
1 head.

what atre the values of n, s1, and s2?

2-12

Pitfall: Dealing with the Line Terminator,
v \n '

m Given the code and input on the previous slide
n will be equalto "2",
sl will be equalto "", and
s2 will be equalto "heads are better than"

m [f the following results were desired instead
n equalto "2",
sl equalto "heads are better than", and
s2 equalto "1 head"

then an extra invocation of nextLine would be needed
to get rid of the end of line character (' \n")

m [nputScanner4.java (s-Word file)

2-13

http://aimanhanna.com/concordia/comp248/InputScanner4.java
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc

Pitfall: You “should” avoid resource leak -
close () the Scanner

®E You avold leaving an open Scanner object behind
when your program exists

m Scanner kb = new Scanner(System.in);

kb.close();

m Java does not enforce it; so you will only get a warming 1f
you do not close an opened Scanner object (or objects if
you create more than one)

m Nonetheless, you should close it/them before your end

your program
2-14

Methods in the Class Scanner
(Part 1 of 3)

Methods of the Scanner Class

The Scanner class can be used to obtain input from files as well as from the keyboard. However, here we
are assuming it is being used only for input from the keyboard.

To set things up for keyboard input, you need the following at the beginning of the file with the keyboard
input code:

import java.util.Scanner;
You also need the following before the first keyboard input statement:
Scanner Scannner_Object_Name = new Scanner(System.in);

The Scannner_0Object_Name can then be used with the following methods to read and return various
types of data typed on the keyboard.

Values to be read should be separated by whitespace characters, such as blanks and/or new lines. When
reading values, these whitespace characters are skipped. (It is possible to change the separators from
whitespace to something else, but whitespace is the default and is what we will use.)
Scannner_0Object_Name.nextInt()

Returns the next value of type int that is typed on the keyboard.

(continued)

Methods in the Class Scanner
(Part 2 of 3)

Methods of the Scanner Class

Scannner_Object_Name.nextLong()

Returns the next value of type long that is typed on the keyboard.
Scannner_Object_Name.nextByte()

Returns the next value of type byte that is typed on the keyboard.
Scannner_Object_Name.nextShort()

Returns the next value of type short that is typed on the keyboard.
Scannner_Object_Name.nextDouble()

Returns the next value of type double that is typed on the keyboard.
Scannner_Object_Name.nextFloat()

Returns the next value of type float that is typed on the keyboard.

(continued)

Methods in the Class Scanner
(Part 3 of 3)

Methods of the Scanner Class

Scannner_Object_Name.next ()

Returns the String value consisting of the next keyboard characters up to, but not including, the first
delimiter character. The default delimiters are whitespace characters.

Scannner_0Object_Name.nextBoolean()

Returns the next value of type boolean that is typed on the keyboard. The values of true and false are
entered as the strings "true" and "false". Any combination of upper- and/or lowercase letters is
allowed in spelling "true" and "false".

Scanner_Object_Name.nextLine()

Reads the rest of the current keyboard input line and returns the characters read as a value of type String.
Note that the line terminator "\n" is read and discarded; it is not included in the string returned.

Scanner_Object_Name.useDelimiter (New_Delimiter) ;

Changes the delimiter for keyboard input with Scanner_0Object_Name. The New_Delimiter is a value of type
String. After this statement is executed, New_Delimiter is the only delimiter that separates words or num-
bers. See the subsection “Other Input Delimiters” for details.

Other Input Delimiters

m The delimiters that separate keyboard input can be changed
when using the Scanner class

m For example, the following code could be used to create a
Scanner object and change the delimiter from white-space to

" ##n

Scanner keyboard2 = new
Scanner (System.in) ;

Keyboard2.useDelimiter ("##") ;

m After invocation of the useDelimiter method, "##" and

not white-space will be the only input delimiter for the input
object keyboard2

m [nputScannerd.java (s-Word file)

2-18

http://aimanhanna.com/concordia/comp248/InputScanner5.java
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc

Changing the Input Delimiter
(Part 1 of 3)

Changing the Input Delimiter

import java.util.Scanner;

public class DelimiterDemo

{

public static void main(String[] args)

{
Scanner keyboardl = new Scanner(System.1in);
Scanner keyboard2 = new Scanner(System.1in);
keyboard2.useDelimiter("##");
//Delimiter for keyboardl is whitespace.
//Delimiter for keyboard2 is ##.

(continued)

Changing the Input Delimiter
(Part 2 of 3)

Changing the Input Delimiter

String wordl, word2;

System.out.println("Enter a line of text:");

wordl = keyboardl.next();

word2 = keyboardl.next();

System.out.println("For keyboardl the two words read are:");
System.out.println(wordl);

System.out.println(word2);

String junk = keyboardl.nextLine(); //To get rid of rest of line.

System.out.println("Reenter the same 1line of text:");

wordl = keyboard2.next();

word2 = keyboard2.next();

System.out.println("For keyboard2 the two words read are:");
System.out.println(wordl);

System.out.println(word2);

(continued)

Changing the Input Delimiter
(Part 3 of 3)

Changing the Input Delimiter

SAMPLE DIALOGUE

Enter a line of text:

one two##three##

For keyboardl the two words read are:
one

two##three##

Reenter the same line of text:

one two##three##

For keyboard2 the two words read are:
one two

three

Money Formats

m Using the NumberFormat class enables a program to output
amounts of money using the approptiate format

® The NumberFormat class must first be zported in order to
use it

import java.text.NumberFormat

= An object of NumberFormat must then be created using
the getCurrencyInstance () method

s The format method takes a floating-point number as an
argument and returns a String value representation of the
number in the local currency

2-22

Money Formats

import java.text.NumberFormat;

public class CurrencyFormatDemo

{

public static void main (String[] args)

{

System.out.println ("Default location:") ;
NumberFormat moneyFormater =
NumberFormat.getCurrencyInstance() ;

System.
System.
System.
System.
System.

out.println (moneyFormater
out.println (moneyFormater
out.println (moneyFormater
out.println (moneyFormater
out.println() ;

.format(19.8)) ;
.format(19.81111)) ;
.format (19.89999)) ;
.format (19)) ;

2-23

Money Formats

m Output of the previous program

Default location:
$19.80
$19.81
$19.90
$19.00

2-24

Specifying Locale

m Invoking the getCurrencyInstance () method
without any arguments produces an object that will
format numbers according to the default location

m [n contrast, the location can be explicitly specified by
providing a location from the Locale class as an
argument to the getCurrencyInstance ()
method

= When doing so, the Locale class must first be imported
import java.util.Locale;

2-25

Specifying Locale

import java.text.NumberFormat;
import java.util.Locale;

public class CurrencyFormatDemo

{

public static void main(String[] args)

{

System.

out.println ("US as location:");

NumberFormat moneyFormater2 =
NumberFormat.getCurrencyInstance (Locale.US) ;

System.
System.
System.
System.

out.println (moneyFormater2.format(19.8)) ;
out.println (moneyFormater2.format(19.81111))
out.println (moneyFormater2.format(19.89999))
out.println (moneyFormater2.format(19)) ;

0
4

0
4

2-26

Specifying Locale
m Output of the previous program

US as location:
$19.80
$19.81
$19.90
$19.00

2-27

Locale Constants for Currencies of Different
Countries

Locale Constants for Currencies of Different Countries

Locale.CANADA Canada (for currency, the format is the same as US)
Locale.CHINA China

Locale.FRANCE France

Locale.GERMANY Germany

Locale.ITALY ltaly

Locale. JAPAN Japan

Locale.KOREA Korea

Locale.TAIWAN Taiwan

Locale.UK United Kingdom (English pound)

Locale.US United States

The DecimalFormat Class

m Using the DecimalFormat class enables a program to format
numbers in a variety of ways

m The DecimalFormat class must first be zzported

= A DecimalFormat object is associated with a pattern
when it is created using the new command

= The object can then be used with the method format to
create strings that satisty the format

® An object of the class DecimalFormat has a number of
different methods that can be used to produce numeral
strings in various formats

2-29

The DecimalFormat Class

Part1 of 3

The DecimalFormat Class

import java.text.DecimalFormat;

public class DecimalFormatDemo

{

public static void main(String[] args)

{

DecimalFormat pattern00dot000 = new DecimalFormat("00.000");
DecimalFormat pattern0dot®@ = new DecimalFormat("0.00");

double

System.
System.
System.
System.

double

System.
System.

d = 12.3456789;

out.println("Pattern 00.000");
out.println(pattern00dot000.format(d));
out.println("Pattern 0.00");
out.println(pattern0dot00.format(d));

money = 19.8;
out.println("Pattern 0.00");
out.println("$" + pattern0dot00.format(money));

DecimalFormat percent = new DecimalFormat("0.00%") ;

(continued)

The DecimalFormat Class
Part 2 of 3

The DecimalFormat Class

System.out.println("Pattern 0.00%");
System.out.println(percent.format(0.308));

DecimalFormat eNotationl =

new DecimalFormat ("#0.###EQ");//1 or 2 digits before point
DecimalFormat eNotation2 =

new DecimalFormat("00.###EQ");//2 digits before point

System.out.println("Pattern #0.###EQ");
System.out.println(eNotationl.format(123.456));
System.out.println("Pattern 00.###EQ");
System.out.println(eNotation2.format(123.456));

double smallNumber = 0.0000123456;
System.out.println("Pattern #0.###E0");
System.out.println(eNotationl. format(smallNumber));
System.out.println("Pattern 00.###E0");
System.out.println(eNotation2.format(smallNumber));

(continued)

The DecimalFormat Class
Part 3 of 3

The DecimalFormat Class

SAMPLE DIALOGUE

Pattern 00.000
12.346 The number is always given, even

Pattern 0jElﬂﬂﬂﬂd_ﬂﬂ__fﬂﬂﬂ"’#ﬂﬂ#-ffﬁméfﬁquﬁféb%ﬂaﬂﬂgtﬁﬁ
12.35 format pattern.
Pattern 0.00

$19.80

Pattern 0.00%

30.80%

Pattern #0.###EQ

1.2346E2

Pattern 00.###EQ

12.346E1

Pattern #0.###EOQ

12.346E-6

Pattern 00.###EQ
12.346E-6

