
Comp 248

Introduction to Programming

Chapter 2 - Console Input & Output

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2008-2016 Aiman Hanna

All rights reserved

System.out.println for console output

 Every invocation of println ends a line of

output

System.out.println("The account has

a balance of " + balance);

2-2

println Versus print

 Another method that can be invoked by the

System.out object is print

 The print method is like println, except

that it does not end a line

2-3

 OutputFormatting1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/OutputFormatting1.java
http://aimanhanna.com/concordia/comp248/MathOperations2.java
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting1.java.doc

Formatting Output with printf

 Starting with version 5.0, Java includes a method named

printf that can be used to produce output in a

specific format

 System.out.printf can have any number of

arguments

 The first argument is always a format string that

contains one or more format specifiers for the

remaining arguments

2-4
 OutputFormatting2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/OutputFormatting2.java
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting2.java.doc

printf Format Specifier

 The code

double price = 19.8;

System.out.printf("Price is:

%10.2f", price);

System.out.println(" each");

 will output the line

 Price is: 19.80 each

2-5

Right and Left Justification in printf

 Specifier such as %8.2 will right-justifythe

output

 If left-justification is needed, then a “-” sign

is placed after the % of the specifier.

 System.out.printf("Price is:

%-10.2f", price);

 OutputFormatting3.java (MS-Word file)

2-6

http://aimanhanna.com/concordia/comp248/OutputFormatting3.java
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting3.java.doc

Multiple arguments with printf

 It is also possible to format different
types with printf

 %n is used for new line

 %% is used to escape a specifier

2-7

 OutputFormatting4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/OutputFormatting4.java
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc
http://aimanhanna.com/concordia/comp248/OutputFormatting4.java.doc

Format Specifiers for System.out.printf

2-8

Importing Packages and Classes
 Libraries in Java are called packages

 A package is a collection of classes that is stored in a manner that
makes it easily accessible to any program

 In order to use a class that belongs to a package, the class must be
brought into a program using an import statement

 Classes found in the package java.lang are imported
automatically into every Java program

import java.text.NumberFormat;

 // import the NumberFormat class only

import java.text.*;

 //import all the classes in package

java.text

2-9

Console Input Using the Scanner Class

 Starting with version 5.0, Java includes a class for doing simple
keyboard input named the Scanner class

 In order to use the Scanner class, a program must include the
following line near the start of the file:
import java.util.Scanner

2-10

 InputScanner2.java (MS-Word file)

 InputScanner1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/InputScanner2.java
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner2.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner1.java.doc

Console Input Using the Scanner Class

 The method next reads one string of non-

whitespace characters delimited by

whitespace

 The method nextLine reads an entire line

of keyboard input

2-11

 InputScanner3.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/InputScanner3.java
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner3.java.doc

Pitfall: Dealing with the Line Terminator,

'\n'

 The method nextLine of the class Scanner reads the remainder
of a line of text starting wherever the last keyboard reading left off

 This can cause problems when combining it with different methods
for reading from the keyboard such as nextInt, or next

 Given the code,

Scanner keyboard = new Scanner(System.in);

int n = keyboard.nextInt();

String s1 = keyboard.nextLine();

String s2 = keyboard.nextLine();

 and the input,

2

Heads are better than

1 head.

 what are the values of n, s1, and s2?

2-12

Pitfall: Dealing with the Line Terminator,

'\n'

 Given the code and input on the previous slide
n will be equal to "2",

s1 will be equal to "", and

s2 will be equal to "heads are better than"

 If the following results were desired instead
n equal to "2",

s1 equal to "heads are better than", and

s2 equal to "1 head"

 then an extra invocation of nextLine would be needed
to get rid of the end of line character ('\n')

2-13

 InputScanner4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/InputScanner4.java
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner4.java.doc

Pitfall: You “should” avoid resource leak -

close() the Scanner

 You should avoid leaving an open Scanner object behind
when your program exists

 Scanner kb = new Scanner(System.in);
 :

 :

 :

kb.close();

 Java does not enforce it; so you will only get a warning if
you do not close an opened Scanner object (or objects if
you create more than one)

 Nonetheless, you should close it/them before your end
your program

2-14

Methods in the Class Scanner

(Part 1 of 3)

2-15

Methods in the Class Scanner

(Part 2 of 3)

2-16

Methods in the Class Scanner

(Part 3 of 3)

2-17

Other Input Delimiters
 The delimiters that separate keyboard input can be changed

when using the Scanner class

 For example, the following code could be used to create a
Scanner object and change the delimiter from white-space to
"##"

Scanner keyboard2 = new
Scanner(System.in);

Keyboard2.useDelimiter("##");

 After invocation of the useDelimiter method, "##" and
not white-space will be the only input delimiter for the input
object keyboard2

2-18

 InputScanner5.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/InputScanner5.java
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc
http://aimanhanna.com/concordia/comp248/InputScanner5.java.doc

Changing the Input Delimiter

(Part 1 of 3)

2-19

Changing the Input Delimiter

(Part 2 of 3)

2-20

Changing the Input Delimiter

(Part 3 of 3)

2-21

Money Formats
 Using the NumberFormat class enables a program to output

amounts of money using the appropriate format

 The NumberFormat class must first be imported in order to
use it

import java.text.NumberFormat

 An object of NumberFormat must then be created using
the getCurrencyInstance() method

 The format method takes a floating-point number as an
argument and returns a String value representation of the
number in the local currency

2-22

Money Formats

2-23

import java.text.NumberFormat;

public class CurrencyFormatDemo

{

 public static void main(String[] args)

 {

 System.out.println("Default location:");

 NumberFormat moneyFormater =

 NumberFormat.getCurrencyInstance();

 System.out.println(moneyFormater.format(19.8));

 System.out.println(moneyFormater.format(19.81111));

 System.out.println(moneyFormater.format(19.89999));

 System.out.println(moneyFormater.format(19));

 System.out.println();

 }

}

Money Formats

 Output of the previous program

Default location:

$19.80

$19.81

$19.90

$19.00

2-24

Specifying Locale

 Invoking the getCurrencyInstance() method
without any arguments produces an object that will
format numbers according to the default location

 In contrast, the location can be explicitly specified by
providing a location from the Locale class as an
argument to the getCurrencyInstance()
method

 When doing so, the Locale class must first be imported

import java.util.Locale;

2-25

import java.text.NumberFormat;

import java.util.Locale;

public class CurrencyFormatDemo

{

 public static void main(String[] args)

 {

 System.out.println("US as location:");

 NumberFormat moneyFormater2 =

 NumberFormat.getCurrencyInstance(Locale.US);

 System.out.println(moneyFormater2.format(19.8));

 System.out.println(moneyFormater2.format(19.81111));

 System.out.println(moneyFormater2.format(19.89999));

 System.out.println(moneyFormater2.format(19));

 }

}

Specifying Locale

2-26

Specifying Locale

 Output of the previous program

US as location:

$19.80

$19.81

$19.90

$19.00

2-27

Locale Constants for Currencies of Different

Countries

2-28

The DecimalFormat Class

 Using the DecimalFormat class enables a program to format
numbers in a variety of ways

 The DecimalFormat class must first be imported

 A DecimalFormat object is associated with a pattern
when it is created using the new command

 The object can then be used with the method format to
create strings that satisfy the format

 An object of the class DecimalFormat has a number of
different methods that can be used to produce numeral
strings in various formats

2-29

The DecimalFormat Class

(Part 1 of 3)

2-30

The DecimalFormat Class

(Part 2 of 3)

2-31

The DecimalFormat Class

(Part 3 of 3)

2-32

